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13And I applied my mind to seek and

to search out by wisdom all that is done

under heaven; it is an unhappy business

that God has given to the sons of men

to be busy with.
14I have seen everything that is done

under the sun; and behold, all is van-

ity and a striving after wind.
15What is crooked cannot be made

straight, and what is lacking cannot be

numbered.

Ecclesiastes 1, 13-15
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Abstract

We investigate the different existing approaches for the upscaling problem
of porous media, i.e., the problem of the translation of the microscopic
equations to the macroscopic equations. The Homogenization Theory is
shown to be equivalent to the Volume Averaging Method with Closure for
the case of Darcy’s law. For the case of wave propagation in porous media,
the Biot theory is briefly discussed, and it is shown that it addresses the
dynamic interaction between the solid and the pore fluid on a macroscopic
level. It is similar to the so-called Theory of Porous Media (TPM), yet the
latter does not consider this dynamic coupling. Though this may lead to
correct results in the low-frequency domain, it will fail for high-frequency
wave phenomena.

The high-frequency behavior of fluid velocity patterns for smooth and
corrugated pore channels is studied in detail. The classical approach of
Johnson et al. for smooth morphologies is obtained in different man-
ners, thus clarifying differences with the Sheng & Zhou and Avellaneda
& Torquato treatments. For extreme geometries having singularities like
wedge-shaped intrusions, the classical approach has to be modified by a non-
analytic extension proposed by Achdou & Avellaneda. The dependency of
this extension on the apex angle of the wedge is derived and shown to be
different from the original Achdou & Avellaneda theory. Precise numerical
computations for various apex angles in two-dimension channels confirmed
this relation. Moreover, it was found that the contribution of the singu-
larities only adds an extra non-analytical term, but does not change the
parameters of the classical theory by Johnson et al.

One of these parameters, the weighted pore volume-to-surface ratio Λ,
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is carefully evaluted for different apex angles and channel pore throat di-
ameters. It appears that our computational method employing Schwartz-
Christoffel transformations produces results that are fully identical to Fi-
nite Element computations performed by Firdaouss et al. The Schwartz-
Christoffel transformations, however, are computationally much more effi-
cient.

For low frequencies, it was pointed out by Pride et al. that the classical
dynamic behavior for viscous damping as described by Johnson’s scaling
function, is not entirely adequate. This scaling describes the functional
relationship of the dynamic permeability/tortuosity on frequency. In the
viscous regime, however, non-leading order terms are not correctly pre-
dicted. Pride et al. therefore modified the viscous scaling function, and
showed this modification to be correct for sinusoidally varying tubes. Es-
sentially, a new pore space parameter, the Stokes tortuosity, was introduced
to allow for this modification. This Stokes tortuosity is the low-frequency
counterpart of the conventional tortuosity, which is evaluated in the limit
of high frequencies. In this thesis, it is shown that also thermal damping
can be addressed in this way, i.e., the thermal scaling function introduced
by Allard et al. also has to be modified to obtain the correct behavior for
low frequencies. Using a precise numerical Finite Element Scheme, the full
dynamic viscous and heat problem is solved in two dimensions for regular
arrangements of cylindrical and square fibres. The porosity is varied over a
wide range by changing the radii of the cylinders or the side lenghts of the
squares. We find that indeed the modified scaling functions for both the
thermal and viscous damping are now in full agreement with the numerical
predictions.

In order to explore experimentally the dynamic behavior of extreme ge-
ometries, a model porous medium was constructed out of a stack of orifice
plates separated by cylindrical spacers. In this way, a bimodal tube config-
uration was put together with extreme orifice-to-spacer diameter ratio. The
dynamic permeability of this sample was experimentally determined in the
Dynamic Darcy Cell, where an oscillating fluid flow in the sample is induced
by means of an electro-mechanical device. To vary the viscosity of the fluid,
different mixtures of water and glycerol were used. In this way, a broad
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range of dimensionless frequencies could be covered. The temperature de-
pendence of the mixture was measured separately. We find good agreement
between the experimental results and the scaling function predictions. The
properties of the model porous medium were determined separately, both
experimentally and numerically. They serve as input parameters for the
scaling function. These experimental and numerical results were found to
be in excellent agreement.





Cha p t e r I

Upscaling techniques for porous media

In this Chapter we give the basic definitions common to all porous ma-
terials, and compare several upscaling techniques widely used in current
literature. In sections

�
2 and

�
3 we introduce the basic concepts of porous

medium, separation of scales, Representative Elementary Volume (REV),
and average quantities. In

�
4 we show that the introduction of a so-called

closure hypothesis is needed to describe the unknown coupling between the
solid matrix and the fluid phase, and we point out that it can be of a
macroscopic nature like in Biot’s and Mixture theory approach, or of a mi-
croscopic nature like in the Volume Averaging, and the Formal Asymptotic
Expansion. In

�
5 we will study the microscopic upscaling technique known

as Volume Averaging Method with Closure, and we compare it with the
Double Scale Asymptotic Expansion presented in

�
6. In

�
7 we analyze the

macroscopic upscaling technique used by Biot to derive a theory for the
wave propagation in a saturated poro-elastic solid and we compare it to
the Mixture Theory for Porous Media.

�
1 Introduction

Porous materials are found in virtually every scientific field. Examples of
this large variety of natural and artificial porous media are loose sand, sand-
stones, soils, concrete, absorbing foams, chemical reactors, bones, lungs,
and kidneys. We define a porous medium as a portion of space consisting

5
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of a persistent solid part called solid matrix and a pore space which can be
occupied by one or more fluid phases (for instance gas, water, or oil). We
say that a porous medium is fully saturated when a single or more fluid
phases occupy the whole connected porous domain. In a porous medium,
the microscopic fields are continuous in each individual phase, but can
be discontinuous at the fluid-solid interface, where they may experience
an abrupt change in their value, depending on the particular boundary
conditions of the problem. This change actually happens at interfaces of
vanishing thickness which can be treated as a mathematical discontinuity
of the field.

The definition of scale of observation is essential to porous media the-
ories. In fact, we can identify a porous medium only at a macroscopic
observation scale, Lx, while we can distinguish the morphology only at a
microscopic observation scale Ly. Therefore, a porous medium domain can
be considered homogeneous at a macroscopic scale, with respect to any
macroscopic geometrical or physical parameter, if this parameter has the
same value at all points of the domain. In the same way must be under-
stood the concept of isotropy: a porous medium is isotropic at a point with
respect to a given macroscopic property, if that property doesn’t vary with
the direction starting from that point. If the condition Ly ¿ Lx is satisfied,
we say that the two scales of observation are separated. Many porous me-
dia exhibit multiple separated length scales. This is the case, for instance,
of oil reservoirs, in which it is possible to distinguish first the megascopic
geological features, and then, going down in observation scale, the macro-
scopic faults, the fractures, the surface roughness of the fracture, the pore
structure of the rock matrix, and finally microscopic clay structures inside
the pores. Other porous materials do not show any separation of the scales:
this is the case for fractal media (Cushman, 1992).

A complicated micro-structure such as that of a porous medium allows
for different descriptions. Due to the wide range of disciplines in which
porous media are involved, different conceptual models have been proved
equally successful in the description of physical processes in porous me-
dia. One of these conceptual models is, for instance, the array of channels
model depicted in figure 1.1. This model considers the porous medium as



�
1 ] 7

Local map

Figure 1.1: Idealization of a porous medium as a bundle of channels mapped
onto a regularly spaced array of straight tubes.

an array of non-intersecting winding channels of varying cross section. A
further idealization then maps these channels onto an array of parallel, reg-
ularly spaced, non-intersecting straight circular cylinders, a configuration
for which a simple analytical solution exists. This mapping involves the use
of macroscopic parameters like the porosity to describe how the channels are
spaced, the tortuosity to describe how they are winded and oriented, and
the permeability to account for their flow resistance. All these macroscopic
parameters will be thoroughly discussed in the following chapters.

While in the array of channels model we stress the importance of the
flow pathways, in the network models the emphasis is given to certain re-
gions of the pore-space identified as pores, their size-distribution, and their
mutual interconnection via some generally narrow channels called bonds
(Held & Celia, 2001). A network is a graph consisting of a set of vertices
(the pores) connected by bonds (the channels). The individual pores are of-
ten modelled as arranged on a regular lattice. Sahimi (1995) also discusses
the possibility of introducing some surface roughness inside the pores as-
sociated with each vertex of the lattice through the use of probabilistic
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distributions of protrusions inside each pore, or by the use of fractal-like
surfaces.

Another possible idealization of the porous medium is the grains model
in which the solid matrix is represented as a collection of grains with con-
vex surface (Rubinstein & Torquato, 1989). The grains can be considered
either interpenetrated or not, and are packed according some probabilis-
tic distribution. This framework is often used to model unconsolidated
materials.

�
2 The Representative Elementary Volume

Moving up from one scale to another in a porous medium necessitates the
use of some kind of average operator on the microscopic fields at the scale
Ly, to obtain fields which are significant at the macroscopic scale Lx. This
average operator acts on some volume of the porous medium, and assigns
a macroscopic value to it. Therefore, the macroscopic fields are, unlike the
microscopic fields, smeared over the space. The question arises about the
correct size of the averaging volume. We define a Representative Elemen-
tary Volume, REV in short, as the smallest volume of integration which
contains all the characteristic features of the porous medium. The size of
the REV, Lx, must be intermediate between a characteristic microscopic
length and a characteristic macroscopic length scale of the sample, LR,
viz., Ly ¿ Lx ¿ LR. Sometimes these length scales depend not only on
the micro-structure of the porous medium, but also on the physical process
under study. It is also possible that porous media with a clear separation
of the geometric scales do not have a REV for a particular physical process.
This is the case for the dispersion problem in porous media, for example.

A general definition of the average operator must be made in terms
of convolution products of spatial distribution functions (Cushman, 1984;
Quintard & Whitaker, 1994). Let the scalar ψ be a general spatial distri-
bution function of a physical quantity defined by

ψ =

{
ψf in the fluid volume Vf ,

ψs in the solid volume Vs.
(2.1)
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An example of such a distribution function is the fluid phase indicator
function If defined as

If =

{
1 in Vf ,

0 in Vs.
(2.2)

Definition (2.1) can be naturally extended to more general tensorial quan-
tities.

The gradient of ψ is given by

∇− ψ = ∇ψ + nfs(ψ
f − ψs)δfs, (2.3)

in which the symbol ∇− represents the derivative in the sense of the distribu-
tions theory, ∇ is the classical spatial derivative which operates on physical
quantities belonging at least to C1, the class of differentiable functions, nfs

is the normal vector at Afs, the fluid-solid interface, pointing from the fluid
to the solid. The Dirac distribution δfs is defined as

∫

IR3

ψδfsdV =

∫

Afs

ψdA. (2.4)

An important theorem is associated with the convolution product of the
derivative of a distribution:

m ∗ ∇− ψ = ∇(m ∗ ψ) + m ∗ (nfs(ψ
f − ψs)δfs), (2.5)

where ∗ is the convolution operator defined by

m ∗ ψ
∣∣∣
x

=

∫

r∈IR3

m(x − r)ψ(r)dV. (2.6)

Here, x is the vector pointing to the coordinates of the centroid of the REV,
r is the integration variable, and we made use of the fact that ∇(m ∗ ψ) =
m∗∇ψ (Schwartz, 1966). The function m(r) is a test-function such that for
m ∈ C∞, the class of infinitely differentiable functions, m has a compact
support over IR3, and

∫
r∈IR3 m(x − r)IfdV = 1. Equation (2.5) states that

the convolution (generalized average) of the gradient of the distribution of
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a physical quantity ψ, equals the gradient (in the classical sense) of the
convolution of ψ, plus the convolution of a distribution defined over Afs,
the fluid-solid surface. This theorem is the key tool in the volume averaging
method (Hassanizadeh & Gray, 1979; Whitaker, 1999). If we choose for m
the test function m

m =

{
1

Vf
|x − r| ≤ Lx,

0 |x − r| > Lx,
(2.7)

where Vf is the fluid volume of the REV, the classical definition of the
average operator 〈 〉 can be written as (see (2.6))

〈ψ〉 = m ∗ ψ =
1

Vf

∫

Vf

ψdV. (2.8)

Substitution of the test function m, into equation (2.5) yields

〈∇− ψ〉 = ∇〈ψ〉 + [[ψ]], (2.9)

where we define the surface average operator [[ ]]

[[ψ]] = m ∗ ((ψf − ψs)nfsδfs) =
1

Vf

∫

Afs

(ψf − ψs)nfsdA. (2.10)

�
3 Geometric characterization

Porous media can be distinguished into deterministic and stochastic. These
attributes refer of course to the micro-geometry of the porous medium.

The idealization underlying the use of stochastic methods is that the
irregular geometry is a statistical realization drawn at random from an
ensemble of possible geometries, and assumes that the characteristic fea-
tures of the micro-geometry can be described by some probability distri-
bution. The pore geometry is thus described by random sets in terms of
a small number of geometric parameters. On the other hand, a determin-
istic porous medium can be thought as a spatially periodic repetition of



�
3 ] 11

some given micro-geometry. This occurs for instance in tailored materi-
als, which are sought to satisfy some design specifications not fulfilled by
natural materials.

A general characterization of porous media should be well defined in
terms of geometric quantities, and should involve only parameters that
are directly computable or measurable. It also should require a number
of parameters which is commensurate to the process model under study,
i.e., the set of parameters must be not too large (to make it economically
feasible), nor too small in order to catch all the relevant features of the
physical process. Among the most important geometric parameters of pore
geometry we can certainly mention the porosity φ, which is the ratio of the
pore-volume to the total volume of the REV

φ =
Vf

(Vf + Vs)
. (3.1)

We can also define a surface porosity φa which is the ratio of the fluid area
on the boundary of the REV divided by At, the total area of the boundary
itself

φa =
Aff

At
. (3.2)

For homogeneous media, the Delesse principle states that the volume poros-
ity, φ, can be estimated from the surface porosity, φa, obtained by im-
age analysis techniques (Ruzyla, 1986). Another very important geometric
quantity which characterizes porous media is the tortuosity α∞, which gives
an idea of the tortuous path that a fluid particle must follow in the filtration
movement. A review of the different definitions of the tortuosity proposed
in the literature can be found in Diedericks & Du Plessis (1995). In the
present work we will make use of the definition of the tortuosity given in
Johnson et al. (1987). In (

�
11) we relate Johnson’s definition of the tor-

tuosity to the so-called added mass effect in the irrotational behavior of
an oscillating viscous flow at high frequencies. The tortuosity can experi-
mentally be determined since it relates to the formation factor defined as
α∞/φ = rs/rf , where rs is the intrinsic resistivity [Ωm] of a fluid-filled
porous insulator, and rf is the intrinsic fluid resistivity (Brown, 1980).
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Furthermore, the tortuosity so defined is also numerically computable by
means of the relation α∞ = 〈|E|2〉/|〈E〉|2, where E is defined as the gradient
of some potential electric field.

Another macroscopic quantity is the Darcy’s permeability k0, which
describes the flow resistance of the porous medium. The square root of
the permeability,

√
k0, is a length scale characteristic of the microgeome-

try. Other fundamental characteristic lengths, essential for the description
the viscous and thermal dynamic dissipation, are the characteristic ther-
mal length Λ′ = 2Vf/Afs, also known as hydraulic radius, and the char-
acteristic viscous length Λ = 2〈|E|2〉/[[|E|2]], an electrically weighted pore
volume (Vf )-to-pore surface (Afs) ratio (see Chapter III).

Of course it is possible to seek for relationships among the geometric
quantities. Examples are the Kozeny-Carman empirical law for the perme-
ability k0 (see Kostek et al. (1992))

k0 = CΛ′2 φ3

(1 − φ)2
, (3.3)

where C is some constant, and Λ′ is the characteristic thermal length.
Another example is Archie’s law

α∞ = φ1−c (3.4)

which relates the tortuosity to the so-called cementation factor c (Lynch,
1962). In the present work we will analyze in detail the Johnson et al.
(1987) conjecture which states that the following combination of geometric
parameters

8k0α∞
φΛ2

≈ 1 (3.5)

for all porous materials.

�
4 Microscopic vs Macroscopic theories

The correct description of flow and transport in multi-phase systems is a
problem of increasing importance and interest in engineering. Therefore
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many different theories have been proposed to describe in terms of macro-
scopic measurable variables the processes taking place at the microscopic
level. The starting point for all these porous media theories is the defi-
nition of conservation equations for mass, momentum, and energy. This
treatment is not different from the classical approach of continuum me-
chanics. However, unlike classical continuum mechanics, the porous media
continuum mechanics introduces an extra unknown, which is due to the
coupling between the solid matrix and the fluid phase. Each of these the-
ories needs therefore the introduction of a so-called closure hypothesis to
account for the interaction between fluid and solid. A closure hypothesis
is an assumption about the structure of the unknown microscopic fields.
For instance, it can be a relationship between the microscopic velocity field
and a combination of different velocity scales like in the homogenization
approach.

Two possible approaches are generally acknowledged to derive macro-
scopic equations for porous media: the macroscopic and the microscopic
approach.

In the macroscopic approach, the phases are viewed as overlapping con-
tinua, which simultaneously exist everywhere and occupy the whole space.
Among the macroscopic approaches we can count the Biot approach based
on Lagrangian continuum mechanics, and the mixture theory for porous
media (see

�
7).

In the microscopic approach the system is conceived to be composed
of different continua, each occupying only part of the space and separated
by highly irregular interfaces. In the microscopic approach, the upscaling
of the problem comes from the fact that the scale of system described is
altered by averaging the equations over some representative element of vol-
ume like in the volume average technique described in

�
5, or expanding

the unknown functions by means of a small parameter ε like in the double-
scale asymptotic expansion technique described in

�
6. In sections

�
5 and

�
6, we will try to make a comparison between the two methods studying

the Darcy’s filtration problem for micro-incompressible fluids. A somewhat
simplified form of the double-scale asymptotic expansion technique is also
known as the homogenization, or formal asymptotic expansion. In this sim-
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plified form, the expansion of the unknown microscopic physical quantities
is assumed to have the form of a polynomial in the small parameter ε.
Bourgeat et al. (1988) described the differences and the common points
between the formal asymptotic expansion, and the volume averaging with
closure method, taking as an example a linear diffusion problem. In

�
10, we

will use formal asymptotic expansion, to obtain the homogenized equations
for wave propagation in porous media.

�
5 The volume averaging with closure method

The first microscopic upscaling technique we are going to analyze is the
so-called volume averaging method with closure (Whitaker, 1999).

The method of volume averaging is a technique that can be used to
rigorously derive continuum equations for multi-phase systems. This
means that equations which are valid within a a particular phase can
be spatially smoothed to produce equations that are valid everywhere

(Whitaker, 1999).

Once the equations at the scale of the pore are averaged over the pore-
volume of the REV, macroscopic equations of equilibrium are obtained
which still contain reference to microscopic fields. Therefore, at this point
of the method, the introduction of some kind of closure hypothesis is needed.
In order to close the system of equations, Slattery (1967) used some pos-
tulates of phenomenological nature, while Whitaker (1986) used a order of
magnitude analysis argument.

The first step in the volume averaging method is to write the microscopic
equations governing the fluid and the solid phase at the microscopic level.
The continuity equation, and the momentum balance equation for the fluid
phase are written in the form

0 = ∇− · v, (5.1a)

0 = −∇− p + ge + η∇− 2v, (5.1b)

v = 0 on Afs, (5.1c)
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where v is the microscopic fluid velocity, p is the fluid pressure, ge is the
gravity force, e = (0, 0, ez) is the unit vector, and η is the fluid viscosity.
The average of the microscopic equations (5.1) is subsequently taken

0 = 〈∇− · v〉, (5.2a)

0 = −〈∇− p〉 + 〈ge〉 + 〈η∇− 2v〉. (5.2b)

Introducing in (5.2) the decomposition of the pressure and velocity

p = 〈p〉 +
◦
p, (5.3a)

v = 〈v〉 +
◦
v, (5.3b)

where
◦
p and

◦
v represent the deviations from the average pressure and veloc-

ity respectively, and after some algebra and repeated applications of (2.9),
equation (5.2) becomes

0 = ∇ · 〈v〉, (5.4a)

0 = −∇〈p〉 + ge + η∇2〈v〉 + [[(−I
◦
p + η∇− ◦

v)·]], (5.4b)
◦
v = −〈v〉 on Afs (5.4c)

◦
p,

◦
v periodic on Aff . (5.4d)

Subtracting (5.4) from (5.1), the spatial deviation momentum equation
takes the form

∇− · ◦
v = 0, (5.5a)

0 = −∇− ◦
p + η∇− 2 ◦

v − [[(−I
◦
p + η∇− ◦

v)·]], (5.5b)
◦
v = −〈v〉 on Afs. (5.5c)

The solution is then sought in the form

◦
v = − B · 〈v〉 + ΥB, (5.6a)

1

η
◦
p = − b · 〈v〉 + Υb, (5.6b)
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where ΥB, and Υb are arbitrary functions, which means that the second
order tensor B and the vector b can be specified in any way one wishes, for
instance in the form

0 = ∇− · B, (5.7a)

−∇− b + ∇− 2
B = [[(−Ib + ∇− B)·]] (5.7b)

B = −I on Afs, (5.7c)

B periodic on Aff , (5.7d)

〈B〉 = 0. (5.7e)

This particular choice of B, and b (Whitaker, 1986) allows one to prove
that the microscopic fields ΥB, and Υb are equal to zero. Substituting (5.6)
into (5.4b), and neglecting ∇2〈v〉, the so-called Brinkman term, we obtain

0 = −∇〈p〉 + ge − η[[(−Ib + ∇− B)·]]〈v〉, (5.8)

which we recognize as the classical Darcy’s law

〈v〉 = − k

ηφ
· (∇〈p〉 − ge), (5.9)

whose permeability tensor can be written in the form

k = −φ[[(Ib −∇− B)·]]−1. (5.10)

However, if we choose to seek our solution in the form (Sanchez-Palencia,
1980)

ηv = − D · 〈(∇〈p〉 − ge)〉 + ΥD, (5.11a)
◦
p = − d · 〈v〉 + Υd, (5.11b)

and a closure problem for D, and d in the form (Barrère et al., 1992)

0 = ∇− · D, (5.12a)

I = ∇− d −∇− 2
D, (5.12b)

D = 0 on Afs, (5.12c)

D periodic on Aff , (5.12d)
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it is also possible to prove that ΥD, and Υd are equal to zero, and that the
permeability tensor takes the form

k = φ〈D〉. (5.13)

It is possible to derive a relationship between the the closure fields of the
two approaches (5.6), and (5.11). We notice that, because of the periodicity
of the B and b fields on Aff , the fluid boundary of the REV, the following
identity holds

[[(−Ib + ∇− B)·]] +
1

Vf

∫

Aff

(−Ib + ∇− B·)nffdA = 〈(−∇− b + ∇− 2
B)〉. (5.14)

We also notice that since the permeability tensor k is constant, ∇− 2(I : k) = 0.
Recalling the definition for k in (5.10), substituting (5.14) in (5.7), and com-
paring the outcome with (5.12) yields the sought relationship between the
B and b fields, and the D and d fields

D = (B + I) : k, (5.15a)

d = b · k. (5.15b)

However, though the approaches are completely equivalent, it is clear that
the closure problem (5.12) is much simpler to solve than (5.7).

The considerations developed in this section show that the upscaling
approach to porous media is non-unique, and that one has to choose the
closure hypothesis of the averaged equations in such a way to obtain an
appealing form for the final closure problem to solve.

�
6 Double scale asymptotic expansion

The second homogenization technique we consider is the double-scale asymp-
totic expansion. This technique is based on the mathematical proof of some
rather involved convergence theorems. In this section, we only try to give
the sketch of the general line of thinking behind the method taking as an
example the Darcy’s filtration problem. The first rigorous proof of the
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convergence of the method for this case was given by Tartar (1980). In
the forthcoming, we will follow to the work of Allaire (1996, pp. 45–69).
This technique applies essentially to periodic structures with separation
of the scales, i.e., porous media in which the microscopic scale y is much
smaller than the macroscopic scale x. A parameter ε is defined such that
ε = Ly/Lx, where Ly and Lx are two characteristic lengths of the micro-
scopic and macroscopic scales, respectively. The periodic cell must be a
smooth, bounded, connected set in IRn, and so must be the subdomain
which represents the fluid part of it.

The n−dimensional domain Vt is covered by a regular mesh of size ε:
each cell Vt

ε
i is of the type [0; ε]n, and is divided into a fluid part Vf

ε
i and a

solid part Vs
ε
i

Vf
ε =

N(ε)⋃

i=1

Vf
ε
i , Vs

ε =

N(ε)⋃

i=1

Vs
ε
i , (6.1)

where the number of cells is N(ε) = Vtε
−n.

We now consider the fluid pressure p, and velocity v to be functions of
the ε parameter. In this way we can define two sequences of functions vε,
and pε, whose elements satisfy the microscopic Stokes equations

∇pε − ε2η∇2vε = ge, (6.2a)

∇ · vε = 0, (6.2b)

v = 0 on Afs. (6.2c)

The next step is to obtain a priori estimates of the solution vε, and pε

which are independent of ε. However, in order to do so, the sequences vε,
and pε must be defined in a fixed functional space independent of ε. This
implies the extension of vε and pε to the entire domain Vt. The velocity is
naturally extended in the whole domain as follows

v̌ε =

{
vε in Vf

ε

0 in Vs
ε

(6.3)
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while the fluid pressure needs to be smeared out also in the solid phase

p̌ε =

{
pε in Vf

ε

1
Vf

ε
i

∫
Vf

ε
i
pε in Vs

ε
i ,

(6.4)

These extensions (v̌ε, p̌ε) satisfy the a priori estimates

‖v̌ε‖ + ε‖∇v̌ε‖ ≤ C, (6.5a)

‖p̌ε‖ ≤ C, (6.5b)

where the constant C does not depend on ε, and ‖ ‖ is the norm in the
space of the square-integrable functions.

It is possible to prove the following theorem (Allaire, 1996, p. 47)

Theorem. The extension (v̌ε, p̌ε) of the solution (vε, pε) of (6.2) is such
that v̌ε converges weakly in L2(Vt)

N , the space of square integrable func-
tions, to 〈v〉(x), p̌ε converges strongly in L2(Vt)

N/IR to p(x), where (〈v〉(x), p(x))
is the unique solution of the homogenized problem, a Darcy law

〈v〉 = − k

ηφ
· (∇p(x) − ge), (6.6a)

∇ · 〈v〉 = 0, (6.6b)

〈v〉 · n = 0 on Aff , (6.6c)

where k is a symmetric, positive definite tensor defined by

k = φ〈D〉, (6.7)

and D denotes the unique solution of the the local Stokes problem

0 = ∇− · D, (6.8a)

I = ∇− d −∇− 2
D, (6.8b)

D = 0 on Afs, (6.8c)

D periodic on Aff . (6.8d)
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We notice that the incompressibility of the fluid at the microscopic scale
is directly translated to the incompressibility at the macroscopic scale. Ob-
viously, starting from compressible fluids at the micro-scale, incompress-
ibility at the macro-scale disappears.

A simplified form of the double-scale asymptotic expansion method is
often found in literature under the name of formal asymptotic expansion
method, or simply homogenization. Instead of constructing the a-priori
estimates (6.5), and subsequently prove the convergence, it introduces the
following ansatz on the development of the microscopic fields

ψ(x, y) = ψ0(x, y) + εψ1(x, y) + ε2ψ2(x, y) + · · · . (6.9)

To conclude, we notice that the macroscopic equation (6.6a), is the same
as the one obtained by means the volume average method with closure
in section

�
5 (see (5.9)), and that we obtained the same closure problem

(compare (5.12) and (6.8)). The double-scale asymptotic expansion method
and the volume average method with closure are therefore equivalent for
this problem.

�
7 Biot’s approach to porous media

Biot (1956a,b) developed a theory for the wave propagation in a poro-
elastic solid containing a compressible viscous fluid, based on a Lagrangian
mechanics approach. The essence of Biot’s closure hypothesis consists in
admitting the existence of definite positive energy density function, K, and
the existence of a macroscopic dissipation function, D. In this sense this
approach can be considered as a macroscopic upscaling approach. With
an exp(iωt) dependence for the physical variables, the expression for the
kinetic energy per unit volume, K, was postulated to be in the form

K =
1

2
(iω)2

(
(1 − φ)ρsûs · ûs + 2ρ12û

s · ûf + φρf ûf · ûf
)

, (7.1)

where ûf and ûs are the fluid and solid displacement vectors respectively,
and ω is the frequency of the oscillation, and ρ12 = −(α∞ − 1)φρf . The
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expression for the dissipation per unit volume, D, was postulated in the
form

D =
1

2

ηφ2

k0
(iω)F (ω)|ûs − ûf |2, (7.2)

where the complex-valued function F (ω) depends on the micro-geometry of
the porous medium, and accounts for the exchange of momentum between
the two phases due to the viscosity η embedding, thus, the viscous losses.

This discussion on the interaction is completely denied by another macro-
scopic upscaling method based on the extension of mixture theories for gases
which often has been proposed in literature. This theory is referred to by
de Boer (2000) as the Theory of Porous Media (TPM). In this theory, the
macro-mechanical quantities are not related to the micro-geometry of the
porous medium. Like in the Biot’s Lagrangian approach described in

�
7

these methods,

“... directly proceed from a macroscopic point of view, that is, in as-
suming a statistical distribution of the single constituents through the
control space (superimposed continua), all mechanical and thermody-
namic quantities are described via average functions of the micro-
scale” (Ehlers & Kubik, 1994).

The key concept in this approach is the volume fraction, by means of which
all geometric and physical quantities, such as motion, deformation, and
stress, are defined in the total control space, and can be interpreted as the
statistical average values of the real quantities. The closure of the system of
field equations is avoided by the introduction of some ad-hoc macroscopic
constitutive equations which are determined by test observations.

The missing interaction between the fluid and solid phase in the mixture
theory approach is clearly exposed in the conclusion drawn by Ehlers and
Kubik and stated as

Biot’s classical dynamic equations of 1956 could be shown to be close
to the correct result and to equal to the correct result, if either dy-
namic coupling included into ρ12 vanishes or if the solid and fluid
acceleration coincide ... (Ehlers & Kubik, 1994)
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This means that in the TPM approach, the tortuosity α∞ is implicitly
assumed equal to 1.

�
8 Conclusions

In the present introductory Chapter, we gave the basic definitions common
to all porous theories, and compared several upscaling techniques widely
used in current literature.

In sections
�
2 and

�
3 we gave the definitions of porous medium, sep-

aration of scales, Representative Elementary Volume (REV), and average
quantities which form the basic set of concepts of the following sections, and
Chapters. In

�
4 we observe that, unlike classical continuum mechanics, the

porous media continuum mechanics introduces an extra unknown which is
due to the coupling between the solid matrix and the fluid phase. Every
theory of porous media needs therefore the introduction of some kind of
closure hypothesis, which can be of a macroscopic nature (Biot’s approach,
Mixture theory approach), or of a microscopic nature (Volume Averaging,
Double Scale Asymptotic Expansion). We conclude that several possible
theories of porous media are possible depending on the problem at hand.

In
�
5 we treated the microscopic upscaling technique know as Volume

Averaging Method with Closure. From the analysis of the method, we con-
clude that the choice of the closure hypothesis is in general not unique, even
for the same upscaling technique. For instance, Whitaker (1986) defined
the closure hypothesis on the microscopic variables in the form (5.6) and
derived the closure problem (5.7) with an expression for the permeability
tensor (5.10). Later on, Barrère et al. (1992) used the same upscaling tech-
nique described in Whitaker (1986), but defined the closure hypothesis on
the microscopic variables in the form (5.11), and obtained the closure prob-
lem (5.12) and the permeability tensor in the form (5.13). The equivalence
of the two closure hypothesis is illustrated in (5.15). Notice, however, that
the closure problem (5.7) is an integro-differential problem, which is much
more difficult to solve than (5.12) which is equivalent to a classical Stokes
problem. This point leaves open the question on the existence of a closure
hypothesis which could lead to an even simpler closure problem than (5.7).
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In
�
6 we sketched another microscopic upscaling technique, the Double

Scale Asymptotic Expansion. We proved that the resulting closure prob-
lems leads to the same closure problem for the microscopic variables as can
be seen from the comparison of (5.12), and (6.8). The interpretation of the
microscopic variables is however quite different from the Volume Averaging
Method with Closure. Contrary to the assumption in

�
5 where the fluid

pressure is discontinuous at the fluid-solid interface, in
�
6 the fluid pres-

sure is smeared also in the solid phase space (see (6.4)), making its physical
interpretation quite hard.

In
�
7 we analyze the macroscopic upscaling technique used by Biot to

derive a theory for the propagation of stress waves in a saturated poro-
elastic solid. We stress there the meaning of the coupling between fluid
and solid phases, which is obtained by means of a macroscopic coefficient
like the tortuosity.
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From micro to macro

In this chapter we present the derivation of the macroscopic equations rele-
vant for visco-thermal dissipation in a rigid solid matrix, from the equations
governing the fluid-phase at the microscopic level. We will base our expo-
sition on the papers of Zhou & Sheng (1989), Smeulders et al. (1992), and
Lafarge et al. (1997), who followed the seminal works of Lévy (1979) and
Auriault et al. (1985). In

�
10 we justify, from the homogenization point of

view, the uncoupling of the full visco-thermal problem, into two indepen-
dent problems, and we derive the macroscopic laws which will be discussed
from a more phenomenological point of view in

�
11. In

�
12 we also give a

numerical illustration of the limits of validity of the uncoupling hypothesis
for a tube flow subjected to an external harmonic source, and we give an
order of magnitude for the separation of scales threshold. In

�
13 we present

an original derivation of the high-frequency limit for the dynamic thermal
response.

�
9 Microscopic equations

Consider an air-filled porous medium under the excitation of an external
harmonic source with frequency ω. We assume that all the quantities of
interest can be written in the form f(r, t) = f̂(r, ω) exp(iωt), where i =√
−1, is the imaginary unit.

25
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The linearized fluid motion is completely characterized, at the micro-
scopic level, by the fluid velocity v̂(r, ω), the excess fluid pressure p̂(r, ω),
with respect to the fluid pressure at rest p̄, the excess fluid density ρ̂(r, ω),
with respect to the fluid density at rest ρ̄, and the excess fluid temperature
T̂ (r, ω), with respect to the fluid temperature at rest T̄ , where all the excess
quantities are supposed to be small with respect to the reference quantity
at rest. The solid is assumed to be at rest.

The linearized equations governing the fluid phase at the microscopic
scale are the conservation of mass

iωρ̂ + ρ̄∇ · v̂ = 0; (9.1)

the conservation of momentum

iωρ̄v̂ = ∇ · σ̂, (9.2)

where σ̂ is the fluid stress tensor, and the linearized conservation of energy
for the fluid phase

iωρ̄ŝ =
1

T̄
∇ · (λ∇T̂ ) +

1

T̄
(σ̂ + p̂I) : ∇v̂, (9.3)

where s is the fluid entropy, and λ is the thermal conductivity. We notice
that the term (σ̂ + p̂I) : ∇v̂, represents the decrease per unit time of the in
the kinetic energy owing to dissipation, and can be therefore neglected in
our analysis. The quantities ρ̂, and ŝ are expressed as functions of p̂, and
T̂ , by means of the relations

dρ =
∂ρ

∂p

∣∣∣
T

dp +
∂ρ

∂T

∣∣∣
p

dT, (9.4)

ds =
∂s

∂p

∣∣∣
T

dp +
∂s

∂T

∣∣∣
p

dT. (9.5)

With the definitions of the specific heat at constant pressure cp,

cp = T̄
∂s

∂T

∣∣∣
p

, (9.6)
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the coefficient of thermal expansion at constant pressure κ

κ = −1

ρ̄

∂ρ

∂T

∣∣∣
p

, (9.7)

and the isothermal compressibility coefficient K

1

K
=

1

ρ̄

∂ρ

∂p

∣∣∣
T

, (9.8)

and noticing that from one of the Maxwell relations

∂s

∂p

∣∣∣
T

=
1

(ρ̄)2
∂ρ

∂T

∣∣∣
p

, (9.9)

it is possible to write the excess density and entropy as a function of the
pressure and the temperature in the form

ρ̂ =
ρ̄

K
p̂ − ρ̄κT̂ , (9.10)

ŝ =
cp

T̄
T̂ − κ

ρ̄
p̂. (9.11)

In this study we limit ourselves to consider viscous Newtonian saturat-
ing fluids whose stress tensor can be written

σ̂ = −p̂I + η(∇v̂ + v̂∇− 2

3
I∇ · v̂) + η′I∇ · v̂, (9.12)

where η and η′ are the dynamic and bulk fluid viscosities. The notation
∇v̂ + v̂∇ = ∂v̂i

∂xj
+

∂v̂j

∂xi
. We consider all the coefficients in the stress tensor

not depending on the frequency, nor on pressure, velocity or temperature.
The value of v at the fluid-solid interface Afs is prescribed by the classical
no-slip boundary condition,

v̂ = 0. (9.13)

The condition for the excess temperature T̂ at Afs is

T̂ = 0, (9.14)

which means that the solid matrix has a much larger heat capacity than
the fluid phase, and therefore cannot be heated up by any change in tem-
perature of the fluid.



28 [ II

�
10 Homogenization of the system

In the present work we will restrict ourselves to the study of the fluid
viscous and thermal dissipation, in fully saturated permeable porous media.
Of course, many other dissipation mechanism could be, and actually are,
responsible for the damping of the acoustic waves in a porous medium such
as, for instance, the electro-acoustic dissipation in brine-saturated porous
media (Pride, 1994), or the squirt-flow mechanism (Parra, 1997).

In
�
9 we derived the coupled set of microscopic equations

iω(
ρ̄

K
p̂ − ρ̄κT̂ ) + ρ̄∇ · v̂ = 0, (10.1a)

iωρ̄v̂ = ∇ · (−p̂I + η(∇v̂ + v̂∇− 2

3
I∇ · v̂) + η′I∇ · v̂), (10.1b)

iωρ̄(
cp

T̄
T̂ − κ

ρ̄
p̂) =

1

T̄
∇ · (λ∇T̂ ). (10.1c)

The solution of this system of equations is impossible for any non-trivial
geometry and its numerical solution also represents a very difficult task.
However, in most of the application cases, it is possible to define a small
parameter ε which enables significant simplifications in the computation of
some average quantities of interest. When we perform a measurement in a
porous medium it is clear that we have to define the scale of the observation.
Thus, for a porous medium of length LR, the macroscopic pressure gradient
is defined on a length scale Lx, such that Ly ¿ Lx ¿ LR, where Ly is a
length scale characteristic of the pore size. We define therefore the small
parameter ε = Ly/Lx. In order to avoid scattering, we impose that the
wavelength λ = 2πca/ω ≈ Lx, where ca is the speed of sound in air, and
the frequency ω scales like ν/L2

y. For sedimentary rocks saturated with
water, ε ≈ 10−3 (Zhou & Sheng, 1989), whereas ε ≈ 10−4 for usual acoustic
materials saturated with air (Lafarge et al., 1997).

Following Zhou & Sheng (1989) and Lafarge et al. (1997), we will express
pressure in units of Lxη2/ρ̄L3

y, while the temperature T̂ will be expressed
in Lxη3/ρ̄2λL3

y. Let’s consider the case of an ideal gas saturating the pore
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space. With the above scalings, we can write the system (10.1) in the
following non-dimensional form

iωv̂ = −ε−1∇p̂ + ∇2v̂ +

(
1

3
+

η′

η

)
∇(∇ · v̂), (10.2a)

iω

(
p̂ − γ − 1

γ
Pr T̂

)
= −1

γ
ε−1∇ · v̂, (10.2b)

iω Pr T̂ = iωp̂ + ∇2T̂ , (10.2c)

v̂ = 0 on Afs, (10.2d)

T̂ = 0 on Afs, (10.2e)

where Pr = ηcp/λ is the Prandtl number and

T̄ κ2K

ρ̄cp
=

γ − 1

γ
(10.3)

is a well known thermodynamic identity (Pierce, 1989, p. 30). For an ideal
gas κT̄ = 1. Now we are ready to apply the well known technique of
homogenization to equations (10.2). This technique consists essentially of
three steps (Sanchez-Palencia, 1980). First we write the unknowns of the
problem as a function of the two scales x, and y,

v̂(x, y) = v̂0(x, y) + εv̂1(x, y) + ε2v̂2(x, y) + · · · (10.4a)

p̂(x, y) = p̂0(x, y) + εp̂1(x, y) + ε2p̂2(x, y) + · · · (10.4b)

T̂ (x, y) = T̂0(x, y) + εT̂1(x, y) + ε2T̂2(x, y) + · · · , (10.4c)

where we made use of the fact that the parameter ε is small to write the
expansions. Secondly, we write the gradient operator in the form :

∇ = ε∇x + ∇y. (10.5)

Finally we substitute (10.4), and (10.5) in (10.2), an we collect the terms
with the same power of ε. This leads to a hierarchy of equations:

−∇yp̂1 + ∇2
yv̂0 − iωv̂0 = ∇xp̂0, (10.6a)
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∇y · v̂0 = 0, (10.6b)

−iω

(
p̂0 −

γ − 1

γ
Pr T̂0

)
=

1

γ
(∇x · v̂0 + ∇y · v̂1) , (10.6c)

iω Pr T̂0 = iωp̂0 + ∇2
yT̂0, (10.6d)

∇yp̂0 = 0. (10.6e)

Equation (10.6b) states that we can treat the fluid as incompressible at a
microscopic scale. Equation (10.6e) states that p̂0 is a macroscopic variable.
We notice that the Stokes equations (10.6a-10.6b), and the heat-transfer
equation (10.6d-10.6e) result now uncoupled, which means that the vis-
cous dissipation and the thermal dissipation are two phenomena which are
not mutually interfering in porous media with separation of scales. In sec-
tion

�
12, we will compare the classical Rayleigh solution of the coupled

Navier-Stokes-Fourier problem with the uncoupled solution for the case of
a straight cylinder, and we will discuss for which value of the parameter ε
the uncoupling hypothesis is valid. Since the fields p̂1(x, y), v̂0(x, y), and
T̂0(x, y), are the solutions of linear systems, they can be formally expressed
by means of linear operators acting on the source terms −∇xp̂0 and iωp̂0

p̂1 = −Pω(x, y) · ∇xp̂0, (10.7a)

v̂0 = −Vω(x, y) · ∇xp̂0, (10.7b)

T̂0 = Tω(x, y) iωp̂0. (10.7c)

The linear operators Tω(x, y), Pω(x, y), Vω(x, y) are scalar, vector and sec-
ond rank tensor operators respectively. Substitution of equations (10.7)
into (10.6) yields the following set of partial differential equations

iωVω −∇2
yVω + ∇yPω = I, (10.8a)

∇y · Vω = 0, (10.8b)

iω PrTω −∇2
yTω = I, (10.9)
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with the boundary conditions

Vω = 0 (y ∈ Afs), (10.10)

Tω = 0 (y ∈ Afs). (10.11)

General expressions like (10.8) and (10.9) are referred in literature as closure
problems. The terms I, and I in equations (10.8a), and (10.9) represent the
second rank tensor and scalar unit operators respectively.

Averaging of (10.7b) over the y-scale, leads to the macroscopic equation

〈v̂0〉 = −〈Vω(x, y)〉 · ∇xp̂0, (10.12)

which is the extension of the classical Darcy law in the frequency domain.
We can therefore define a complex tensorial quantity called the dynamic
permeability k(ω), which can be computed by

k(ω) = φ〈Vω(x, y)〉. (10.13)

Note that it is written in dimensionless form here. It was shown by Burridge
& Keller (1981) that in the case of a flexible skeleton, the source term ∇xp̂0

can be replaced by ∇xp̂0 + (iω)2û0, where û0 is the solid displacement
vector. However, also in this case the same generic set of equations (10.8)
and (10.9) needs to be solved.

Averaging of the equation (10.7c) over the y-scale, leads to the macro-
scopic equation

〈T̂0〉 = 〈Tω(x, y)〉 (iωp̂0) , (10.14)

which can be thought as the thermal analogous of the classical Darcy’s law.
This means that we can define a thermal dynamic permeability

k′(ω) = φ〈Tω(x, y)〉, (10.15)

analogous to the viscous dynamic permeability. Notice, however, that the
thermal permeability is a scalar quantity and not a second rank tensor as
the viscous permeability.
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�
11 Macroscopic laws

In
�
10 we derived the two macroscopic laws which are relevant for the

viscous and thermal dissipation. In this section we analyze these response
functions in their dimensional form from a more phenomenological point of
view.

The dynamic Darcy’s law is written as:

〈v̂〉 = −k (ω)

ηφ
· ∇〈p̂〉, (11.1)

where 〈v̂〉 is the macroscopic velocity, 〈p̂〉 is the macroscopic pressure, φ the
porosity, and η the fluid viscosity. At low enough frequencies, the region
of the fluid which is submitted to the viscous dissipation encompasses the
entire pore volume. So, from a phenomenological point of view, we can
think equation (11.1), as a natural extension of the classical Darcy’s law
in which the permeability factor is complex-valued. The low frequency
limit k0 = lim

ω→0
k(ω) is the classical static Darcy permeability which can be

computed by
k0

L2
y

= φ〈V0〉, (11.2)

where V0 is the solution of (10.8) for a frequency ω = 0. At high enough
frequencies, the bulk of the pores experience a potential fluid motion, while
the viscous dissipation occurs only in a very tiny boundary layer near the
fluid-solid surface Afs. In this case the inertial forces predominate over the
viscous forces and the macroscopic law which describes the fluid flow is
given by

iωρ̄α∞ · 〈v̂〉 = −∇〈p̂〉, (11.3)

where α∞ > 1 accounts for the so called added mass due to the resistance
offered by the tortuous microscopic paths to the flow. This parameter is
usually called the tortuosity of the porous medium. The definition of the
tortuosity is given by

α∞ = 〈E · E〉 · (〈E〉 · 〈E〉)−1, (11.4)
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where E, is the gradient of some potential field, from which we see that
the tortuosity is a purely geometric parameter. As the imaginary unit on
the left hand side of (11.3) suggests, the phase shift of the microscopic ve-
locity field with respect to the driving force is equal to π/2 over the entire
pore volume. However, when the frequency is high but not infinite, a vis-
cous boundary layer still exists. It is therefore natural to define a dynamic
complex-valued tortuosity depending on the frequency. The viscous inter-
action between the solid and the fluid as a result of a wave propagation can
be therefore rewritten in terms of the dynamic tortuosity tensor α (ω) as

iωρ̄α (ω) · 〈v̂〉 = −∇〈p̂〉. (11.5)

From (11.1) and (11.5), we notice that the dynamic parameters are inter-
related:

α (ω)

α∞
=

k0

k (ω)

ωc

iω
, (11.6)

where

ωc =
ηφ

α∞k0ρ̄
, (11.7)

is the viscous roll-over frequency, which is characteristic of the transition
between the viscous and the inertia dominated regimes: for sake of simplic-
ity, a scalar notation has been used.

In a perfect analogous way to the viscous case, Lafarge (1993) proposed
a description for the thermal dissipation in the form of a thermal perme-
ability k′(ω) or a thermal tortuosity α′(ω):

λφ

k′(ω)
〈T̂ 〉 = iω〈p̂〉, (11.8)

iωα′(ω)ρcp〈T̂ 〉 = iω〈p̂〉, (11.9)

which relate the macroscopic temperature 〈T̂ 〉 to the time derivative of
the macroscopic pressure. An alternate formulation to the k′(ω) is via the
dynamic compressibility β(ω), which accounts for the frequency-dependent
thermal effects that take place at the pore scale:

iω
β (ω)

γp̄
〈p̂〉 = −∇ · 〈v̂〉 , (11.10)
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with γ the specific heat ratio and p̄ the ambient pressure. The low frequency
limit k′

0 = lim
ω→0

k′(ω) is the so-called static thermal permeability which can

be computed by
k′

0 = φ〈T0〉L2
y, (11.11)

where T0 is the solution of (10.9) for a frequency ω = 0. The dynamic
thermal permeability k′(ω) is of course directly related to β(ω) (Lafarge
et al., 1997). Averaging (10.6c) we can write, in dimensionless quantities

−iω

(
p̂0 −

γ − 1

γ
Pr〈T̂0〉

)
=

1

γ
(∇x · 〈v̂0〉 + 〈∇y · v̂1〉) . (11.12)

The term 〈∇y · v̂1〉 = 0 (Lafarge et al., 1997, eq. A14). Substituting (10.14)
and (11.11) into (11.12), we obtain

−∇x · 〈v̂0〉
iωp̂0

= γ − (γ − 1)Pr
k′(ω)

φ
iω, (11.13)

from which the desired relation between β(ω) and k′(ω) follows after intro-
duction of the dimensions

β (ω) = γ − (γ − 1)
iωρPr

ηφ
k′ (ω) . (11.14)

From (11.8) and (11.8), we notice that α′(ω) and k′(ω) are related:

α′(ω) =
k′

0

k′(ω)

ω′
c

iω
, (11.15)

where we defined the characteristic thermal frequency

ω′
c =

λφ

ρ̄cpk′
0

. (11.16)

The viscous and thermal functions can be thought as transfer functions
and must therefore satisfy the causality requirement, i.e., the condition that
no effect can precede its cause. Johnson et al. (1987) proved that, based on
a theorem on the unforced oscillations of the Stokes equations, the response
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functions k(ω) and α(ω) are analytic everywhere in the complex-frequency
ω̂ = ω̃ + iω̆ plane except for values of ω̃ on the positive imaginary axis.
Lafarge (1993) gave an analogous proof for the response functions k′(ω) and
α′(ω). This means that the macroscopic response functions are minimum
phase shift.

From the two fundamental macroscopic equations (11.5) and (11.10)
is now possible to derive the macroscopic wave equation for the pressure
disturbance p̂. For sake of simplicity, and without any loss of generality,
let’s consider the case of an isotropic porous medium for which we can write

iωρ̄α (ω) 〈v̂〉 = −∇〈p̂〉, (11.17a)

iω
β (ω)

γp̄
〈p̂〉 = −∇ · 〈v̂〉 . (11.17b)

Application of the divergence operator ∇· to (11.17a), and subsequent sub-
stitution into (11.17b) yields

∇2〈p̂〉 − ρ̄

γp̄
α(ω)β(ω)(iω)2〈p̂〉 = 0 (11.18)

which is the desired wave equation for the pressure disturbance p̂. The
wave velocity c is thus equal to

c = i
ca

Γ
=

ca√
α(ω)β(ω)

, (11.19)

where ca =
√

γp̄/ρ̄ is the adiabatic sound speed in the gas, and Γ is the
so-called propagation constant.

�
12 Analytic solution for a cylindrical tube

In
�
10 we showed that, under the assumption of the separation of scales

(ε ¿ 1), it is possible to simplify considerably the problem under study
decoupling the full thermo-viscous problem into two independent problems,
viz., the viscous and the thermal one. However, analytic solutions for both
the coupled and the uncoupled problems do exist only for the simple case
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of a straight tube (and the corresponding 2D case of slit flow) for example.
In this section we present these classical analytical solutions. One might
ask why so much emphasis is given to such a micro-geometry which is not
even close to the classical image of a porous medium. The answer lies in
the fact that we can imagine our porous medium as an ensemble of pores of
different sizes connected by individual channels. In general these channels
are neither straight nor of constant width, and the pores can be of different
sizes and shapes. Yet, the solution for a straight tube of constant width
can be an example for the class of all porous media.

Let x and r be the coordinates measured along the longitudinal and
radial directions of the tube of radius R. Introducing the dimensionless
axial symmetric coordinates ξ = ωx/ca, and ζ = r/R, and neglecting the
effects due to the bulk viscosity η′, the fully coupled thermo-viscous problem
(10.2) can be rewritten in the form (Tijdeman, 1975)

iv̂ξ = −1

γ

∂p̂

∂ξ
+

1

Wo2

[
He2 ∂2v̂ξ

∂ξ2
+

∂2v̂ξ

∂ζ2
+

1

ζ

∂v̂ξ

∂ζ
+

He
1

3

∂

∂ξ

(
He

∂v̂ξ

∂ξ
+

∂v̂ζ

∂ζ
+

v̂ζ

ζ

) ]
, (12.1a)

iv̂ζ = −1

γ

1

He

∂p̂

∂ζ
+

1

Wo2

[
∂2v̂ζ

∂ζ2
+

1

ζ

∂v̂ζ

∂ζ
− v̂ζ

ζ2
+

2
He

∂2v̂ζ

∂2ζ
+

1

3

∂

∂ξ

(
He

∂v̂ξ

∂ξ
+

∂v̂ζ

∂ζ
+

v̂ζ

ζ

) ]
, (12.1b)

iρ̂ = − 1

He

[
He

∂v̂ξ

∂ξ
+

∂v̂ζ

∂ζ
+

v̂ζ

ζ

]
, (12.1c)

p̂ = ρ̂ + T̂ , (12.1d)

iT̂ =
1

Pr

1

Wo2

[
∂2T̂

∂ζ2
+

1

ζ

∂T̂

∂ζ
+ He2 ∂2T̂

∂ξ2

]
+ i

γ − 1

γ
p̂, (12.1e)
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where the Helmholtz number He is equal to

He = ωR/c, (12.2)

and the Womersley number Wo is equal to

Wo = R
√

ω/ν. (12.3)

The solution for the pressure perturbation, p̂, of the fully coupled thermo-
viscous problem (12.1), can be put in the form

p̂ = A(ζ)eΓξ + B(ζ)e−Γξ (12.4)

where Γ is the propagation constant, and A, and B are two real valued
functions of the radial coordinate ζ. The real part of Γ represents the
attenuation in the longitudinal axis direction, and the imaginary part of
Γ represent the phase shift over the same direction. The solution to the
fully-coupled problem was given by Kirchhoff (Rayleigh, 1894, vol.2), in the
form of a transcendental complex frequency equation. After some algebra
the solution can be rewritten as (Tijdeman, 1975)

f(Γ) = iΓ2

(
Γ2 − i

Wo2

He2

)− 1

2
(

1

x1
− 1

x2

)
J1(y1)

J0(y1)

+

(
γ

Pr

He2

Wo2 − i
1

x1

) (
Γ2 − x1

) 1

2
J1(y2)

J0(y2)

−
(

γ

Pr

He2

Wo2 − i
1

x2

) (
Γ2 − x2

) 1

2
J1(y3)

J0(y3)
= 0, (12.5a)

where

y1 = He

(
Γ2 − i

Wo2

He2

) 1

2

, y2 = He
(
Γ2 − x1

) 1

2 , y3 = He
(
Γ2 − x2

) 1

2 ,

(12.5b)
and x1 and x2 are the two roots of

1 +

(
1 + i

He2

Wo2 (
4

3
+

γ

Pr
)

)
x + i

γ

Pr

He2

Wo2

(
1

γ
+ i

4

3

He2

Wo2

)
x2 = 0. (12.5c)
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Figure 12.1: Comparison of the uncoupled solution (12.6) (solid line) with
the coupled solution (12.5) for several values of the Helmholtz number He,
and Pr = 1. The curve corresponding to the uncoupled solution He = 0.01
is practically indistinguishable from the fully coupled solution.

Equation (12.5) can be solved by means of a simple Newton-Raphson
method.

The propagation constant Γ for the uncoupled problem is given by
(Zwikker & Kosten, 1949)

Γ =

√
J0(i3/2 Wo)

J2(i3/2 Wo)

√

γ + (γ − 1)
J2(i3/2 Wo Pr1/2)

J0(i3/2 Wo Pr1/2)
, (12.6)

where Jn is the Bessel function of the first kind of order n. We can now
compare the solutions for Γ of (12.6) to those of (12.5) as a function of the
Helmholtz number He. In figure 12.1 we plotted the propagation constant
Γ vs the non-dimensional frequency ω̃, both for the uncoupled (solid line)
and coupled case, the latter for three different values of He. The Prandtl
number was assumed Pr = 1. We notice that in the high frequency range,
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the coupled and uncoupled solutions practically coincide, while differences
can be appreciated in the low frequency range. We also notice that the
curve corresponding to the uncoupled solution He = 0.01 is practically
indistinguishable from the coupled solution, which gives us a threshold for
the validity of the uncoupling hypothesis for wave propagation in porous
media.

�
13 Dynamic thermal behavior

Smeulders et al. (1992) derived the high frequency behavior of the dynamic
viscous tortuosity based on a micro-structural approach. The first step in
order to derive the high-frequency behavior for the thermal dissipation is
to rewrite the expressions of the real and imaginary part of the dynamic
thermal tortuosity α′(ω). From (10.15), (11.11), and (11.15) we have that

iω̃α′(ω)〈T̃ω〉 = 1, (13.1)

where ω̃ = ω/ω′
c, and the excess temperature was normalized with 〈T0〉.

We now take the complex conjugate expression of (13.1):

−iω̃α′∗(ω)〈T̃∗
ω〉 = 1, (13.2)

and we multiply (13.1) and (13.2) by 〈T̃∗
ω〉 and 〈T̃ω〉 respectively to obtain

iω̃α′(ω)|〈T̃ω〉|2 = 〈T̃∗
ω〉, (13.3)

−iω̃α′∗(ω)|〈T̃ω〉|2 = 〈T̃ω〉. (13.4)

The temperature field Tω satisfies:

iω̃T̃ω −∇2
T̃ω = 1. (13.5)

We take the complex conjugate of (13.5)

−iω̃T̃
∗
ω −∇2

T̃
∗
ω = 1, (13.6)
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and we multiply (13.5) and (13.6) for T̃
∗
ω and T̃ω respectively to obtain

iω̃|T̃ω|2 − T̃
∗
ω∇2

T̃ω = T̃
∗
ω, (13.7)

−iω̃|T̃ω|2 − T̃ω∇2
T̃
∗
ω = T̃ω. (13.8)

Adding to and subtracting (13.7) and (13.8) from each other, and taking
the pore-volume average we obtain:

〈T̃∗
ω + T̃ω〉 = −〈T̃∗

ω∇2
T̃ω + T̃

∗
ω∇2

T̃ω〉, (13.9)

〈T̃∗
ω − T̃ω〉 = 2iω̃〈|T̃ω|2〉 − 〈T̃∗

ω∇2
T̃ω − T̃

∗
ω∇2

T̃
∗
ω〉. (13.10)

Now we also add to and subtract (13.3) and (13.4) from each other

iω̃
(
α′(ω) + α′∗(ω)

)
|〈T̃ω〉|2 = 〈T̃∗

ω〉 − 〈T̃ω〉, (13.11)

iω̃
(
α′(ω) − α′∗(ω)

)
|〈T̃ω〉|2 = 〈T̃∗

ω〉 + 〈T̃ω〉. (13.12)

If we now substitute (13.9) and (13.10) into (13.11) and (13.12) and we use
the well known algebraic identity

z =
z + z∗

2
+ i

z − z∗

2i
, (13.13)

we obtain an expression for the dynamic thermal tortuosity

Re[α′(ω)] =
〈|Tω|2〉
|〈Tω〉|2

+
ν

2iω Pr

〈T∗
ω∇2

Tω − Tω∇2
T
∗
ω〉

|〈Tω〉|2
, (13.14a)

Im[α′(ω)] =
ν

2ω Pr

〈T∗
ω∇2

Tω + Tω∇2
T
∗
ω〉

|〈Tω〉|2
, (13.14b)

in which the dimensions have been reintroduced. From (13.5) we notice
that the high-frequency solution of the microscopic closure problem for the
excess temperature is iT̃∞ = 1, which means that the excess temperature
is constant over the bulk of the pore and out of phase with respect to the
external source when δ′ → 0, i.e., when ω → ∞. From (13.14) we observe
that the high-frequency limit for the real part of the dynamic tortuosity
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is therefore always equal to one. For high enough frequencies the adia-
batic thermal problem is confined into a thermal boundary layer which is
small compared to the dimensions of the pore. Substituting the classical
temperature profile of a flat-wall thermal boundary layer

T̃ω = T̃∞

(
1 − e−

√
in

)
, (13.15)

in (13.14), we obtain

Re[α′(ω)] = 1 +
δ′

Λ′ , (13.16a)

Im[α′(ω)] =
δ′

Λ′ , (13.16b)

where
2

Λ′ =
Afs

Vf
, (13.17)

is a characteristic thermal length, analogous of the Kozeny-Karman radius.
The normalized dynamic thermal permeability k̃′(ω) can be written

lim
ω→∞

k̃′(ω) = −iω̃ +
1

2
(1 + i)

√
M ′ω̃− 3

2 , (13.18)

where

M ′ =
8k′

0

φΛ′2 . (13.19)

�
14 Conclusions

In the present Chapter we studied the upscaling problem for the visco-
thermal dissipation in porous materials. In

�
10 we derived, in the frame-

work of homogenization theory, the macroscopic equations for the visco-
thermal dissipation in porous media, starting from the microscopic equa-
tions for the fluid and the solid phase described in

�
9. We proved that,

when the separation of length scales constraint is satisfied, then it is possible
to uncouple the elastic, the viscous, and the thermal problems. In

�
11 we



42 [ II

defined the macroscopic parameters of the viscous and thermal macroscopic
dynamic laws in temrs of the microscopic fields defined on the microgeome-
try of the porous medium. In

�
12, we showed that, for the simple tube flow

problem, the uncoupling of the viscous and thermal problems is justified
when the ratio between the microscopic and the macroscopic length scales
is order 10−2, a condition fullfilled by many porous materials. In

�
13, we

discussed the high frequency thermal dynamic behavior.
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On the viscous length scale of wedge-shaped

porous media1

This work revisits some numerical computations by Kostek et al. [Kostek
S, Schwartz LM, Johnson DL Phys. Rev. B 1992;45:186], Smeulders et al.
[Smeulders DMJ, Van Hassel RR, Van Dongen MEH, Jansen JKM. Int. J.
Engng. Sci. 1994;32(6):979], and Firdaouss et al. [Firdaouss M, Guermond
JL, Lafarge D. Int. J. Engng. Sci. 1998;36:1035]. It concerns the acoustic
properties of 2D porous media whose internal surface contains sharp–edged
wedges. We especially focus on the viscous length parameter Λ of these
porous media, as Firdaouss et al. reported discrepancies between their Λ
computations and the ones by Smeulders et al., which has consequences
for the behavior of Johnson’s shape factor M . Using Schwartz-Christoffel
Transformations, we found that M remains of the order of unity if the pore
throat is pinched by a wedge of constant angle, which confirms the Finite-
Element computations by Firdaouss et al. Discrepancies with respect to
the Finite-Element computations by Kostek et al., however, remain.

�
15 Introduction

Wave propagation through porous media is of a capital importance for many
application fields. With air as the pore fluid, applications can be found in

1published in Int. J. Engng Sci.

43
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noise control and modelling of sound absorbing materials. In the oil indus-
try, acoustic borehole logging is an example of wave propagation through
liquid–saturated porous media. A borehole is drilled in a potential hydro-
carbon reservoir and probed with an acoustic tool. The inversion process
then comprises the delineation of the reservoir properties from the acoustic
signals. We assume that the pore fluid motions can be described at the
microscopic level by the incompressible Stokes flow equations. By means of
averaging methods, such as the homogenization theory (Lévy, 1979), it is
possible to build effective medium theories, provided that we introduce two
hypotheses on the separation of the length scales, viz., we firstly assume
that the characteristic length of the pores is much smaller than the charac-
teristic length scale of the representative elementary volume, and secondly
we assume that the characteristic wave length is much larger than the char-
acteristic length of the pore space. Moreover, we assume that the Reynolds
number characterizing the flow is small so we can neglect all the deviations
due to the non–linearities of the flow. An important aspect of these effective
medium theories is the permeability k, i.e., the macroscopic consequence
of the microscopic fluid–solid interaction. When the fluid saturating the
porous medium is submitted to a macroscopic pressure gradient ∇〈p〉, we
find the classical Darcy’s law to express the linear proportionality between
∇〈p〉 and the macroscopic fluid velocity 〈u〉. The symbol 〈.〉 denotes a
spatial average over the fluid phase. Considering a harmonic dependence
on time of the form exp(iωt), the classical Darcy’s law transforms into a
complex–valued linear relationship:

ηφ

k (ω)
〈û〉 = −∇〈p̂〉 , (15.1)

where η is the dynamic viscosity and φ the porosity. The limit of the
dynamic permeability k(ω) for ω → 0 is the classical Darcy steady–state
real–valued permeability k0. Here it is understood that we are focussing
only on the isotropic case formalism, the anisotropic extension being rather
cumbersome and not giving any more insight. We can also introduce the
dynamic tortuosity α(ω):

iωρfα(ω) 〈û〉 = −∇〈p̂〉 , (15.2)



�
15 ] 45

with the obvious relationship: iωρfα(ω) = ηφ/k (ω). The limit of α(ω) for
ω → ∞ is the real–valued tortuosity (Johnson et al., 1987):

α∞ =

〈
|up|2

〉

〈|up|〉2
, (15.3)

where up is the velocity resulting from a potential problem. We note
that since the boundary layer δ(ω) =

√
2η/ρfω is arbitrary small for high

enough frequencies, the walls of the pore appear to be flat in the boundary
region. Then it is possible to write a second order approximation for the
high frequency limit of α(ω) (Johnson et al., 1987):

lim
ω→∞

α(ω) = α∞

[
1 + (1 − i)

δ(ω)

Λ

]
, (15.4)

where Λ is the viscous length scale, defined as a velocity–weighted pore
volume (V )-to-pore surface (S) ratio:

2

Λ
=

∫
|up|2 dS∫
|up|2 dV

. (15.5)

Johnson et al. (1987) proposed to write Λ as a combination of the tortuosity,
porosity and steady–state permeability, by the introduction of a so–called
shape factor M :

Λ =

√
12α∞k0

φM
. (15.6)

Moreover, they suggested M to be 1, at least approximately. For 3D flows
the factor 12 must be replaced by a factor 8. It was noted that M is of
paramount importance for the modelling of dynamic flow behavior (Johnson
et al., 1987; Smeulders et al., 1992).

In 1994, Smeulders et al. (1994) showed that M could substantially de-
viate from unity for wedge–shaped pore geometries. A schematic of such
geometries is given in figure 16.1. The flow channel is partially obstructed
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by wedges of angle γπ leaving a pore throat opening aLw. Previous consid-
erations on these geometries were already presented by Kostek et al. (1992)
for fluid permeability predictions. Smeulders et al. (1994) found high M -
values for both the cases of small γ and small a using a Schwartz-Christoffel
technique in their computations. In 1998, Firdaouss et al. (1998), using a
Finite-Element method, claimed that M only deviated substantially from
unity for small γ–values and not for small a–values. As the α∞ and k0

computations in Firdaouss et al. (1998) and Smeulders et al. (1994) were
equal, the difference was caused by the Λ calculations according to (15.5).
We will correct a mistake in the original computations (Smeulders et al.,
1994), and show that this leads to a perfect agreement with the results
by Firdaouss et al. (1998). Discrepancies with respect to the Kostek et al.
(1992) results, however, remain. Moreover, we will introduce an alternative
method for the Λ computations, confirming these findings.

�
16 Wedge–shaped geometries

Numerical calculations are performed on the polygonal periodic cell P1...P7,
depicted in figure 16.1. Indicated in figure 16.1 are the x1– and x2–axes.
The distance between P5 and P6, d(P5, P6) = d(P1, P7) = HLw. The dis-
tance d(P1, P5) = d(P6, P7) = Lw. The wedge P2P3P4 is defined by the
parameters 0 < b < 1 and 0 ≤ h < H. For various b and h values we will
now compute α∞ and Λ. In the two–dimensional case, we may write from
(15.3) and (15.5):

α∞ = Aw

∫∫
|up|2dAw/

[∫∫
up1dAw

]2

(16.1)

2

Λ
=

∫ P5

P1

|up|2|dw|/
∫∫

|up|2dAw, (16.2)

where Aw denotes the pore area enclosed by the polygon P1...P7, and up1 is
the x1–component of up. The line integral in the numerator of (16.2) is over
the pore wall P1P2P3P4P5. Obviously, |dw| = (dx2

1 + dx2
2)

1/2. We thus aim
to solve the steady potential flow problem up = ∇yψ, where ψ = ψ0 = 0
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H

Figure 16.1: Geometry of 2D channel with intrusive wedges (left). Geome-
try of the periodic cell (right).

at line element P1P7 and ψ = ψL at line element P5P6. The inflow and
outflow are perpendicular to line elements P1P7 and P5P6 (see figure 16.1).
We shall rewrite (16.1) by considering an incompressible flow at microscale:

|up|2 = ∇y · (ψ · ∇yψ) (16.3)

Integration over the pore area Aw and application of Green’s theorem yields:

∫∫
|up|2dAw =

∮

c

(
ψ

∂ψ

∂x1
dx2 − ψ

∂ψ

∂x2
dx1

)
, (16.4)

where c is the contour P1...P7. Evaluation of the RHS of (16.4) yields:

∫∫
|up|2dAw = QψL, (16.5)



48 [ III

where we have introduced the flow rate Q =
P6∫
P5

up1dx2 = −
P1∫
P7

up1dx2. For

the integral in the denominator of (16.1) we may write:

∫∫
up1dAw =

∫∫
up1dx2dx1 = Q

∫
dx1 = QLw. (16.6)

We are now able to rewrite (16.1):

α∞ =
ψ2

L

L2
w

Aw∫∫
|up|2dAw

. (16.7)

In order to solve the integrals in (16.2) and (16.7), we will apply the con-
formal transformation technique.

�
17 Schwartz–Christoffel Transformations

Although the Schwartz-Christoffel Transformations were described in a pre-
vious paper (Smeulders et al., 1994), we would like to revisit them as they
are treated in more detail here, and moreover, a mistake in Smeulders et al.
(1994) is corrected. In general, a conformal mapping function f : Gz → Gw;
Gz, Gw ⊂ C| , transforms the region Gz into the region Gw. A schematic of
the regions is presented in figure 17.1. Gw is identified as the pore geome-
try defined in figure 16.1, and Gz as the region bounded by the unit circle.
Moreover, a third rectangular region Gv is defined, which results from the
transformation of Gz through the mapping function g. We therefore notice
that

(g ◦ f−1)(w) = g(z) = v, (17.1)

(f ◦ g−1)(v) = f(z) = w. (17.2)

The mapping functions f and g are assumed analytic and bijective and
have nonzero complex derivatives over their entire domain. Such mappings
preserve the angles between intersecting arcs in the domain and image
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g(z)f(z)

Lv

w1
w2

w3

w4 w5

w6

Gw Gz
Gv

1

b p1

b2p

b3p

b4p

b5p

b6p

v2
v3

v1 v4w7

b7p

Figure 17.1: Complex domains used for the conformal mapping calculations.

regions. The Riemann Mapping Theorem (Henrici, 1991) asserts that any
simply connected region in C| can be mapped in this way onto any other such
region. For the pore geometry Gw, the coordinates of the vertices w1, ..., w7

are given by w1 = 0, w2 = 1
2(1− b)Lw, w3 = (1

2 + ih)Lw, w4 = 1
2(1 + b)Lw,

w5 = Lw, w6 = (1 + i)HLw, w7 = iHLw, with 0 ≤ b < 1 and 0 ≤ h < H.

For each 0 ≤ k ≤ 7, we denote βf
k π the angle of wk, where − 1 ≤ βf

k < 1
(see figure 17.1). Positive angles are counterclockwise. We thus have the
simple relationship

7∑

k=1

βf
k = −2.

The analytic function f , conformally mapping Gz onto Gw may now be
written in the form (Henrici, 1991):

w = f(z) = wc + Cf

z∫

0

7∏

k=1

(
1 − z′

zf
k

)βf
k

dz′, (17.3)

for a suitable choice of parameters {zf
k | |zf

k | = 1}, Cf and wc. Please

note that the parameters zf
k are numbered in counterclockwise order. To

determine the map uniquely, the complex values wc and Cf are fixed. The
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simplicity of the explicit formula (17.3) is attractive. The inverse mapping
z = f−1(w) is also a conformal mapping and may be thought as a solution
of an ordinary differential equation in one complex variable w:

dz

dw
=

1

Cf

7∏

k=1

(
1 − z

zf
k

)−βf
k

. (17.4)

In general, the inverse mapping z = f−1(w) is computed numerically (Tre-

fethen, 1979). On the unit circle is thus obtained zf
k = f−1(wk), with

| zf
k |= 1 and k = 1, .., 7.

The rectangular region Gv ⊂ C| is defined by its vertices v1 = g(z7) = i,
v2 = g(z1) = 0, v3 = g(z5) = Lv and v4 = g(z6) = Lv + i. The aspect ratio
0 < Lv ∈ IR obviously depends on the geometry of Gw, i.e., on b, h, and
H. The choice for Lw does not affect Lv, which means that any congruent
polygonal is mapped onto the same rectangle Gv. The analytic function g
may be written in the form:

v = g(z) = vc + Cg

z∫

0

4∏

k=1

(
1 − z′

zg
k

)βg
k

dz′, (17.5)

where the parameters vc and Cg are fixed. Also the vertices vk, k = 1, .., 4,
are computed numerically (Trefethen, 1979).

Since the fluid may be regarded incompressible and irrotational on the
microscopic level, the potential ψ is harmonic, i.e., it satisfies the Laplace
equation ∆ψ = 0. We may also define the conjugate harmonic func-
tion ζ satisfying the Laplace equation and the Cauchy–Riemann equations
∂ψ/∂x2 = ∂ζ/∂x1,− ∂ψ/∂x1 = ∂ζ/∂x2. The function θ(w) = ψ(w)+iζ(w)
is called the complex potential on Gw and satisfies the Laplace equation on
Gw,

∆wθ(w) = 0. (17.6)

In Gv, the complex potential Ω is given by Ω(v) = vΩL/Lv, with Ω = 0 at
v1v2 and Ω = ΩL at v3v4. Using (17.1), the complex potential θ on Gw is
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given by

θ(w) = Ω
(
(g ◦ f−1)(w)

)
=

ΩL

Lv

(
g ◦ f−1

)
(w). (17.7)

For the velocity, we know that

|up|2 = |θ′(w)|2 =
Ω2

L

L2
v

|
(
g ◦ f−1

)′
(w)|2, (17.8)

where the ′ denotes the derivative with respect to the relevant variable, i.e,
w in this case. Using (17.1) and (17.2), the expression for the velocity may
be rewritten in the Gz region:

|up|2 =
Ω2

L

L2
v

∣∣∣∣
g′(z)

f ′(z)

∣∣∣∣
2

, (17.9)

where the ′ refers to a derivation with respect to z in this case. This means
that the line integral in the numerator of (16.2) now becomes:

w5∫

w1

|up|2|dw| =
Ω2

L

L2
v

z5∫

z1

|g′(z)|2
|f ′(z)| |dz| (17.10)

Substitution of the expressions for g′ and f ′, obtained from (17.3) and
(17.5), yields:

w5∫

w1

|up|2|dw| =
Ω2

L

L2
v

|Cg|2
|Cf |

·
z5∫

z1

∣∣∣∣∣
[(1 − z/z1)(1 − z/z5)(1 − z/z6)(1 − z/z7)]

−1/2

(1 − z/z2)β2(1 − z/z3)β3(1 − z/z4)β4

∣∣∣∣∣ |dz|, (17.11)

where we have used that zg
1 = zf

7 , zg
2 = zf

1 , zg
3 = zf

5 , and zg
4 = zf

6 . In (17.11),
the superscripts f in zk and βk are implicitly understood. A scaling factor is
involved here, as we found that |Cf | is linearly proportional to Lw. Because
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of the symmetry of Gw (see figure 17.1), we find that β2 = β4 = −β3/2 <
0. Consequently, the integrand of (17.11) has singularities in zk, k =
1, 3, 5, 6, 7. As the singularities in z6 and z7 are not in the integration
domain, they are of no further concern. The remaining singularities are
integrable, as we will see.

Performing the transformation Gw → Gv, for the area integral in Gw

the integrand (17.8) has to be multiplied by |J | = |(f ◦ g−1)′(v)|2, which
can also be written as |J | = |(g ◦ f−1)′(w)|−2. We obtain:

∫∫

Gw

|up|2dAw =
Ω2

L

L2
v

∫∫

Gv

dAv =
Ω2

L

L2
v

Av =
Ω2

L

Lv
. (17.12)

In the last step of (17.12), we have used that Lv and Av are equal, because
the height of Gv is always 1. Substituting (17.11) and (17.12) into (16.2),
we may now write for the length scale parameter:

2

Λ
=

1

Lv

|Cg|2
|Cf |

z5∫

z1

∣∣∣∣∣
[(1 − z/z1)(1 − z/z5)(1 − z/z6)(1 − z/z7)]

−1/2

(1 − z/z2)β2(1 − z/z3)β3(1 − z/z4)β4

∣∣∣∣∣ |dz|.

(17.13)
Unfortunately, the term 1/Lv in (17.13) was not present in the previous
paper (Smeulders et al., 1994), which caused the differences reported by
Firdaouss et al. (1998). For the tortuosity, we infer from (16.7) that

α∞ =
ψ2

L

Ω2
L

Lv

L2
w

Aw. (17.14)

Setting ψL = ΩL = 1, we arrive at the expression reported previously
(Smeulders et al., 1994). In the limiting case for b = h → 0 (no wedge),
we find that Lv = 1/H, which means that from (17.14) it can be seen that
α∞ = 1.
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�
18 Numerical results

Using the identity z = eiϕ, where 0 = ϕ7 < ϕ1 < · · · < ϕ6 < π, we obtain
for the length scale parameter:

2

Λ
=

1

4Av

|Cg|2
|Cf |

·
ϕ5∫

ϕ1

| sin 1
2(ϕ − ϕ1) sin 1

2(ϕ − ϕ5) sin 1
2(ϕ − ϕ6) sin 1

2(ϕ − ϕ7)|−1/2

| sin 1
2(ϕ − ϕ2)|β2 | sin 1

2(ϕ − ϕ3)|β3 | sin 1
2(ϕ − ϕ4)|β4

dϕ.

(18.1)

Because of the symmetry of the problem, i.e.,
∫ ϕ2

ϕ1
. . . dϕ =

∫ ϕ5

ϕ4
. . . dϕ, and∫ ϕ3

ϕ2
. . . dϕ =

∫ ϕ4

ϕ3
. . . dϕ, we only need to evaluate two integrals, say

ϕ2∫

ϕ1

f1(ϕ)

sin1/2 1
2(ϕ − ϕ1)

dϕ and

ϕ4∫

ϕ3

f2(ϕ)

sinβ3 1
2(ϕ − ϕ3)

dϕ, (18.2)

where we have made explicit the singularities in ϕ = ϕ1 and ϕ = ϕ3. The
functions f1 and f2 do not contain any singularities and are defined as
follows:

f1(ϕ) =
sin−β2 1

2(ϕ2 − ϕ) sin−β4 1
2(ϕ4 − ϕ)

{sin 1
2(ϕ5 − ϕ) sin 1

2(ϕ6 − ϕ) sin 1
2(ϕ − ϕ7)}1/2

1

sinβ3 1
2(ϕ3 − ϕ)

,

(18.3)

f2(ϕ) =
sin−β2 1

2(ϕ − ϕ2) sin−β4 1
2(ϕ4 − ϕ)

{sin 1
2(ϕ5 − ϕ) sin 1

2(ϕ6 − ϕ) sin 1
2(ϕ − ϕ7)}1/2

1

sin1/2 1
2(ϕ − ϕ1)

.

(18.4)
The singularities in the two integrals of (18.2) are overcome by splitting
both integrands into two parts each. The second integrand in (18.2), for
example, can be split into the parts (f2(ϕ) − f2(ϕ3))/ sinβ3 1

2(ϕ − ϕ3) and
f2(ϕ3)/ sinβ3 1

2(ϕ − ϕ3). As the limit of the first part now goes to zero for
ϕ → ϕ3, it can be evaluated numerically. We used a trapezium rule with
iterative step refining to obtain an accuracy better than 10−5.
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The second part f2(ϕ3)/ sinβ3 1
2(ϕ − ϕ3) can be written as a binomial

series expansion in z = 1
2(ϕ−ϕ3) for z < π (Abramowitz & Stegun, 1970):

1

sinβ3 z
=

(
1

z

)β3

+
β3

6
z2−β3 +

β3(5β3 + 2)

360
z4−β3

+
β3(35β2

3 + 42β3 + 16)

45360
z6−β3 + O(z8−β3). (18.5)

Straightforward termwise integration by hand of the above relation yields
the integral of the second part as a series expansion. Also here the ac-
curacy is better than 10−5. We checked our computations against the
MATHEMATICATM package, which can handle (18.1) directly. Because
of the symmetry of the problem, the integration was performed over the
domain from ϕ1 to ϕ3, and a substitution of the form t = sin 1

2(ϕ − ϕ3)
was used. The results were in perfect agreement. In the limiting case for
b = h → 0, we find that

|Cg|
ϕ5∫

ϕ1

| sin 1
2(ϕ − ϕ1) sin 1

2(ϕ − ϕ5) sin 1
2(ϕ − ϕ6) sin 1

2(ϕ − ϕ7)|−1/2

| sin 1
2(ϕ − ϕ2)|β2 | sin 1

2(ϕ − ϕ3)|β3 | sin 1
2(ϕ − ϕ4)|β4

dϕ=
4

H
,

(18.6)
and that |Cg|/|Cf | = 1/HLw. This means that from (18.1) it can be
inferred that Λ = 2HLw, which is twice the pore volume-to-surface ratio
as predicted by (15.5).

Our Schartz-Christoffel transformations are now compared with the
Finite-Element computations by Firdaouss et al. (1998) and Kostek et al.
(1992). In the former case the dimensions of the wedge are varied, whereas
the height of the unit cell H is kept constant (H = 1). In the latter case,
a Koch-curve based geometry is used, where the wedge has equal sides
(b = 1/3; h =

√
3/6), and H is varied. From table 18.1 we notice that there

is a perfect agreement with the Firdaouss et al. (1998) results. We would
like to remark however, that the Schwartz-Christoffel Transformations im-
ply a significant reduction in computation time over the Finite-Element
procedure described by Firdaouss et al. (1998). A graphical representa-
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b Λ/Lw for h = b Λ/Lw for h = 0.5

present Firdaouss et al. present Firdaouss et al.

(1998) (1998)

0.00 2. 2. 0. 0.

0.01 1.913 1.915 0.015

0.02 1.833 0.031

0.05 1.627 0.076

0.10 1.369 1.373 0.149 0.151

0.15 1.183 0.219

0.20 1.044 1.047 0.287 0.288

0.25 0.937 0.350

0.30 0.852 0.855* 0.410 0.412

0.40 0.719 0.728 0.519 0.516

0.50 0.612 0.616 0.612 0.616

0.60 0.516 0.525 0.692 0.693

0.70 0.422 0.423 0.760 0.765

0.80 0.323 0.325 0.817 0.822

0.90 0.205 0.207 0.864 0.870

0.92 0.177 0.177 0.873

0.94 0.145 0.146 0.881

0.96 0.109 0.111 0.889

0.98 ** 0.066

0.988 ** 0.046

Table 18.1: A comparison of Λ parameters for H = 1.0. *: corrected typo in
Firdaouss et al. (1998). **: configuration could not be mapped numerically.
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Figure 18.1: Characteristic length scale Λ/Lw as a function of b for h = 0.5
(o), and h = b (+). The curves represent the present results, whereas the
markers represent the results from Firdaouss et al. (1998).

tion of the Λ–parameter is given in figure 18.1. We notice that Λ tends
to zero for pinched pore throats (b → 1, h = b), and in the limit of sharp
wedge angles (b → 0, h = 0.5). It was calculated by Firdaouss et al.
(1998) that only in the latter case M → ∞, as can be seen from (15.6),
because α∞ and k0 are virtually not affected by b → 0 (Firdaouss et al.,
1998; Smeulders et al., 1994). In the former case, they calculated that M
remains of the order of unity, and Λ → 0 is caused by k0 → 0 Firdaouss
et al. (1998); Smeulders et al. (1994). From table 18.2, we notice that there
is a significant discrepancy with respect to the Kostek et al. (1992) results.
This is probably due to the relatively coarse mesh used by Kostek et al. in
their Finite-Element computations. Indeed, as it was shown by Firdaouss
et al. (1998), an accurate refinement of the mesh around the tip of the edge
is needed in order to obtain the correct value for Λ. Please note that the
unit length used in Kostek et al. (1992) equals

√
3Lw/486.
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H Λ/Lw for b = 1/3; h =
√

3/6

present Kostek et al. (1992)

1.0 0.94974

0.8 0.72957

0.6 0.50598

0.4 0.25348

16
√

3/81 0.15444 0.2310

15
√

3/81 0.10762 0.1637

0.3 0.04930

14
√

3/81 0.04719 0.0892

Table 18.2: A comparison of Λ parameters for variable H. The unit length
used in Kostek et al. (1992) equals

√
3Lw/486.

�
19 Pore variation technique

In 1992, Smeulders et al. (1992) derived an alternative expression for the
characteristic length Λ based on small pore variations. Introducing the for-
mation factor F = α∞/Aw, and using (16.7), their relation can be written
as:

2

Λφ
= −

(
∂
∂r

∫∫
|up|2dAw

)

∇Ψ∫∫
|up|2dAw

=
1

F
(
∂F

∂r
)∇Ψ, (19.1)

where dr is defined as a inward displacement of the pore walls in the normal
direction at constant flow potential gradient ∇Ψ. After some manipula-
tions, (19.1) can be shown identical to

2

Λφ
=

1

Aw

∂Aw

∂r

∂ lnF

∂ lnAw
= − S

Aw

∂ lnF

∂ lnAw
, (19.2)

as for infinitesimal variations dAw = −S dr, where S is the pore wall surface
P1P2P3P4P5. Relation (19.2) appears to be the 2D version of an expression
presented by Johnson et al. Johnson et al. (1986). We used a second order
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backward difference scheme to compute Λφ from (19.1):

2

Λφ
=

1

F0

3F0 − 4F−1 + F−2

2∆r
, (19.3)

where ∆r is 5·10−4 and Fi is computed from Schwartz–Christoffel Transfor-
mations. It is understood that P2 translates over ∆r((cos β − 1)/ sin β + i),
P3 over i∆r/ cos β ,and P4 over ∆r((1−cos β)/ sin β+i), where β = −β2π =
−β4π = arctan(2b/h). We find that up to the fourth digit, the computed
Λφ values are identical to the Λ values obtained earlier.

�
20 Conclusions

We revisited the computations by Kostek et al. (1992), Smeulders et al.
(1994), and Firdaouss et al. (1998) concerning the viscous length scale
of wedge–shaped porous media. Correcting a mistake in Smeulders et al.
(1994), we showed that the Finite-Element results of Firdaouss et al. (1998)
and the conformal mapping results of Smeulders et al. (1994) are now in
perfect agreement. This implies that the viscous length goes to zero both
in the limit of sharp wedges, and in the limit of pinched pore throats.
However, in the former case the shape factor M , used in modelling dynamic
flow behavior, deviates significantly from unity, whereas in the latter case
it does not. Significant discrepancies were found with respect to the results
of Kostek et al. (1992) for a Koch-curve based geometry. This is probably
due to the relatively coarse mesh used in the Finite-Element computations
of Kostek et al. (1992). Moreover, we applied a pore variation technique to
compute Λ. These results fully confirm the previous findings.
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Influence of pore roughness on high-frequency

permeability1

The high-frequency behavior of the fluid velocity patterns for smooth and
corrugated pore channels is studied. The classical approach of Johnson,
D., Koplik, J., and Dashen, R. (1987, J. Fluid Mech. 176 pp. 379–402)
for smooth geometries is obtained in different manners, thus clarifying dif-
ferences with Sheng, P. and Zhou, M. (1988, Phys. Rev. Lett. 61, No 14
pp. 1591–1594) and Avellaneda & Torquato (1991, Phys. Fluids A 3 (11)
pp. 2529–2540) treatments. For wedge-shaped pore geometries, the classi-
cal approach is modified by a non-analytic extension proposed by Achdou,
Y. and Avellaneda, M. (1992, Phys. Fluids A 4 (12) pp. 2561–2673) The
dependency of the non-analytic extension on the apex angle of the wedge
was derived. Precise numerical computations for various apex angles in
two- dimensional channels confirmed this theoretical dependency, which
is somewhat different from the original Achdou & Avellaneda predictions.
Moreover, it was found that the contribution of the singularities does not
alter the parameters of the classical theory by Johnson et al.

�
21 Introduction

The problem of fluid flow through porous media is of paramount impor-
tance in many technological areas. In air-filled sound absorbing media, a

1submitted to Phys. Fluids

59
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precise prediction of sound absorption versus frequency is needed (Lafarge
et al., 1997). In the oil-industry, exploration wells are probed by acoustic
tools and reservoir properties are delineated from the recorded wave trains
(Wisse, 1999). The dynamic permeability k(ω), and the dynamic tortuos-
ity α(ω) are important properties to describe the macroscopic flow through
porous media subjected to an oscillatory pressure gradient. Here, the term
macroscopic refers to a length scale Lx that is much larger than any pore
size Ly. Lx is defined as characteristic wavelength being the product of the
fluid sound speed ca, and an intrinsic viscous relaxation time L2

y/ν, where ν
is the kinematic viscosity of the pore fluid (Smeulders et al., 1992; Lafarge
et al., 1997). Introducing an exp(iωt) dependence for the fluid pressure p
and the macroscopic fluid velocity U, k(ω) and α(ω) are defined by:

ηφ

k(ω)
Û = −∇p̂ (21.1)

iωρα(ω)Û = −∇p̂ (21.2)

In these two expressions, η is the fluid viscosity, ρ is the fluid density, and
φ is the porosity. These relations take into account, in an averaged sense,
the fluid motion that takes place in the pore structure, so that k(ω) and
α(ω) depend on the morphology of the pore space. Johnson et al. (1987),
and later Sheng & Zhou (1988), and Zhou & Sheng (1989) argued that
the transition from low-frequency viscous behavior to high-frequency iner-
tia behavior must be determined by the ratio π1 of the length-scales

√
Fk0

and δ. Here k0 is the stationary Darcy permeability, and F is the forma-
tion factor, a non-dimensional parameter which is related to the effective
electrical conductivity of the porous medium saturated with a conductive
fluid. The viscous skin depth δ =

√
2ν/ω. It was consequently postulated

that k(ω) satisfies a universally valid scaling function

k(ω) = k0f

(
Fk0

δ2

)
. (21.3)

This also means that a characteristic frequency ωc = ν/Fk0 can be defined
where the viscous forces and the inertia forces are of the same order of
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magnitude. Experimental work by Charlaix et al. (1988), and Smeulders
et al. (1992) show very good agreement of such theory on a wide variety
of porous samples. Detailed theoretical analysis, however, showed that
the structure function f of (21.3) must also depend on the ratio π2 =
δ/Λ, where Λ is an electrically weighted pore volume-to-pore surface ratio
(Johnson et al., 1987). Surprisingly, for a wide variety of morphologies,
π1 and π2 were found not to be independent, i.e., their product was found
to be

√
1/8, at least approximately. These morphologies had in common

that they were smooth on the pore scale, i.e., the pore surface had bounded
curvature. The possibility of departure from the structure function f for
corrugated morphologies was investigated by several authors such as Kostek
et al. (1992), Smeulders et al. (1994), Firdaouss et al. (1998), and Cortis
& Smeulders (2001). It appeared that high values for π1 × π2 could be
reached for special cases, but these investigations still did not consider any
comparison over the frequency domain. In other words, only the assumption
that π1 × π2 ≈

√
1/8 was invalidated for some cases, but the structure

function f could still be fully correct, if we rewrite it as a function of two
parameters(Johnson et al., 1987; Smeulders et al., 1992):

k(ω) = k0f

(
Fk0

δ2
,
Fk0

Λ2

)
. (21.4)

In a paper by Achdou & Avellaneda (1992) however, departures from (21.4)
were observed for micro-geometries consisting of corrugated tubes. For high
frequencies, they observed a slower convergence of k(ω) to its asymptotic
limit than predicted from universality theory. A non-analytic correction
to the structure function (21.4) was proposed. The aim of this paper is
to study this non-analytic correction factor. From microstructure, the dy-
namic permeability and tortuosity relations will be derived. Then, analyz-
ing in detail the fluid velocity pattern in the bulk fluid and the boundary
layer, the classical Johnson et al. (1987) high-frequency limit for smooth
geometries will be obtained in different manners, making apparent the dis-
crepancy with the Sheng & Zhou (1988) treatment, and clarifying the
asymptotic boundary layer analysis proposed by Avellaneda & Torquato
(1991). For microgeometries consisting of corrugated tubes, this leads to



62 [ IV

a somewhat different high-frequency correction than proposed by Achdou
& Avellaneda (1992). Furthermore, the theoretical predictions will be nu-
merically evaluated for 2D channels that have wedge-shaped asperities.

�
22 Oscillating Stokes flow

Considering the unsteady Stokes equation for the fluid velocity field v, we
may write

iωρv̂ = −∇p̂ + η∇2v̂ + ĝe, (22.1)

where e is the unit vector (ex, ey, ez), and ĝ is a spatially uniform oscillating
source term, which is expressed in Nm−3. In Achdou & Avellaneda (1992),
ĝ is an external oscillatory pressure gradient, which also appears quite nat-
urally if the conventional technique of homogenization is used. Zhou &
Sheng (1989), Smeulders et al. (1992), and Lafarge et al. (1997) denote this
externally applied pressure gradient −∇xp0. Indeed, the actual pressure p
in the fluid can be viewed as the sum of its local mean value p0 = 〈p〉 and
its deviatoric part p̂ = p − 〈p〉, where 〈 〉 denotes averaging over the pore
fluid volume Vf . The local mean value p0 varies at the macroscopic length
scale Lx, thus its gradient may be considered a spatial constant in Vf . The
deviatoric part p̂ varies at the pore scale Ly and is a stationary field of
zero mean value. This means that, on the average, it does not increase
or decrease in the direction of e. It is fluctuating at the microscopic level
because of the pore geometry, but it does not change from place to place
when averages are considered. For periodic microstructures, the stationary
character of p̂ is expressed by periodic boundary conditions. Furthermore,
it can be obtained from homogenization theory that, because of the scale
separation Lx À Ly, the fluid is locally incompressible

∇ · v̂ = 0. (22.2)

Introducing the scaled velocity ṽ = ηv̂/ĝ expressed in m2, and the scaled
pressure p̃ = p̂/ĝ expressed in m, the unsteady Stokes problem may be
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written

iωṽ/ν = −∇p̃ + ∇2ṽ + e, (22.3a)

∇ · ṽ = 0, (22.3b)

ṽ = 0 on the pore walls, (22.3c)

p̃ : stationary, (22.3d)

where ν is the kinematic viscosity of the fluid. The solution to this problem
can be expressed as a sum of normal modes (Avellaneda & Torquato, 1991):

ṽ(r, ω) =
∞∑

n=1

bnΨn(r)
σn

1 + iωσn/ν
, (22.4a)

p̃(r, ω) =
∞∑

n=1

bnQn(r)
1

1 + iωσn/ν
+ Φ(r). (22.4b)

Here, the dimensionless vector eigenfunctions Ψn satisfy

−∇2Ψn =
1

σn
(Ψn −∇Qn) , (22.5a)

∇ · Ψn = 0, (22.5b)

Ψn = 0 on the pore walls, (22.5c)

Qn : stationary, (22.5d)

and the parameters σn, expressed in m2, are the inverse eigenvalues of the
Stokes operator. They determine the viscous relaxation times Θn = σn/ν
corresponding to purely damped modes ṽ = σnΨne−t/Θn as a solution to
the homogeneous unsteady Stokes problem, i.e., with the external exci-
tation term g = 0 in (22.3a). The functions Qn, which are non-zero in
general, have dimensions of length and determine the corresponding sta-
tionary pressures p̃ = Qne−t/Θn . The largest value σ1 is obviously of order
O(L2

y) and the parameters σn, sorted such that σn+1 < σn, accumulate to
0 when n → ∞. Using the conditions (22.5), it can be verified that the
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eigenfunctions Ψ are orthogonal. They are complete in the subspace of the
square integrable divergence-free fields having zero normal component on
the pore walls. Furthermore, they are chosen orthonormal

1

Vf

∫

Vf

Ψn · ΨmdV = δnm. (22.6)

The dimensionless expansion coefficients bn are defined as

bn =
1

Vf

∫

Vf

Ψn · e dV. (22.7)

Now substituting (22.4a) and (22.4b) in the Stokes equation (22.3a), we see
that (22.3a) is verified if

∞∑

n=1

bnΨn = e −∇Φ. (22.8)

Note that there is a unique solution E, Φ to the following electric problem

E = e −∇Φ, (22.9a)

∇ · E = 0, (22.9b)

E · n = 0 on the pore walls, (22.9c)

Φ : stationary, (22.9d)

where n is the unit outward normal from the pore region. In particular, the
identity

∑∞
n=1 bnΨn = E holds. The field E, which solves the corresponding

electrical conduction problem for a porous medium filled with a conducting
fluid and having an insulating solid phase, can be interpreted as the scaled
electric field, i.e., the local electric field divided by the applied macroscopic
potential gradient. Decomposition (22.9a) is referred to by Avellaneda &
Torquato (1991) as the so-called Hodge decomposition. We notice that
there is a direct relation to the tortuosity factor α∞ which determines the
effective electric conductivity of the porous medium. Applying the unit
electric field e, the microscopic current in the saturating fluid is j = σfE,
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where σf is the fluid electric conductivity. The macroscopic current J =
φ〈j〉 then obeys a macroscopic Ohm’s law J = σeff e, with σeff = φσf/α∞,
and

α∞ =
1

〈E〉 · e =
〈E · E〉
〈E〉 · 〈E〉 . (22.10)

We assumed unidirectional or isotropic porous space so that the tortuosity
is a scalar. Taking the mean value of (22.8), the identity

∞∑

n=1

b2
n =

1

α∞
(22.11)

immediately follows.
On the macro-level, Darcy’s law describes the linear response of the

macroscopic velocity Û to the source term ĝe:

ηφ

k(ω)
Û = ĝe, (22.12)

where k(ω) is the frequency-dependent, complex-valued dynamic perme-
ability. This relation is the counterpart of the classical Darcy’s law for
steady-state flow, and reduces to it for ω → 0. In general, the dynamic
permeability is a second-rank tensor which reduces to a scalar in the case
of unidirectional, isotropic, or simple-cubic micro-structures. In this case,
the macroscopic flow Û is in the same direction as the source term ĝe,
which means that Û = 〈v̂ · e〉e. From (22.12), we now easily find that

k(ω)

φ
= 〈ṽ · e〉. (22.13)

Substitution of (22.4a) yields a series expansion for k(ω):

k(ω)

φ
=

∞∑

n=1

b2
nσn

1 + iωσn/ν
. (22.14)

Another form of (22.13) is particularly useful. For any divergence-free
vector field w which has zero normal components on the interface, there is
identity

〈w · e〉 = 〈w · E〉, (22.15)
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which follows directly from (22.9a) after integrating by parts and using the
stationary character of the fields. Thus we also have

k(ω)

φ
= 〈ṽ · E〉. (22.16)

The velocity response of the fluid to the source term ĝe can also be defined
in analogy with the response of an ideal fluid:

ρα(ω)iωÛ = ĝe, (22.17)

where α(ω) is the frequency-dependent, complex-valued tortuosity

α(ω) =
νφ

iωk(ω)
. (22.18)

Using (22.4a), (22.14), and (22.18), it may be verified that the following
energetic representation of α(ω) is valid

α(ω) =
〈ṽ · ṽ∗〉
〈ṽ〉 · 〈ṽ∗〉 −

ν

iω

〈ṽ · ∇2ṽ∗〉
〈ṽ〉 · 〈ṽ∗〉 , (22.19)

where ∗ denotes complex conjugation. The proof is given in Appendix
�
29.

Using homogenization theory, this result was also obtained by Smeulders
et al. (1992). Physically speaking, this result expresses the condition that
the work performed by the external force per unit time is equal to the rate
of change of the kinetic energy plus the dissipated energy per unit time.
The real part of (22.19) is related to the kinetic energy, and the imaginary
part is related to the mean rate of energy dissipation.

In the forthcoming, we will be mainly concerned with the high frequency
limit ωL2

y/ν → ∞ of the dynamic permeability and tortuosity. In this limit,
the denominators in (22.14) may be replaced by the factors iωσn/ν up to
high values of n, thus showing that k(ω) → νφ/iωα∞, according to (22.11).
Indeed, assuming that the viscous term ∇2ṽ is negligibly small compared to
the inertial term in (22.3a), the Stokes problem (22.3) degenerates into the
electric or ideal fluid problem (22.9), and ṽ → Eν/iω. Substitution of this
result for ṽ in (22.13) or (22.16) again yields the above leading behavior
of k(ω) at high frequencies, while substitution in (22.18) shows that the
corresponding result for the dynamic tortuosity is α(ω) → α∞.
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�
23 High-frequency velocity pattern in smooth geometries

We now examine the precise limit of the Stokes problem (22.3) for ε/Ly → 0,
where ε is the complex viscous skin depth parameter ε =

√
ν/iω= (1 − i)δ/2.

Writing the pressure p̃ in the form p̃ = q̃ +Φ (see (22.4b)) and substituting
in (22.3a) we get

ṽ = ε2(E −∇q̃ + ∇2ṽ). (23.1)

Taking the curl of (23.1), we obtain the diffusion equation for the vorticity,
∇× ṽ − ε2∇2∇× ṽ = 0. Following Johnson et al. (1987), we note that in
the limit of high frequencies the viscous skin depth δ = 2|ε| eventually
becomes much smaller than any characteristic pore size Ly. Any vorticity
generated at the pore walls decays to zero as one moves away distances of
the order δ from the wall into the bulk of the pore. Thus, the Laplacian
∇2ṽ = −∇×∇× ṽ, vanishes in the bulk fluid except for a boundary layer
of thickness δ near the pore walls. It follows that outside this boundary
layer, the fluid motion is that of potential flow, with

ṽ = ṽp = ε2(E −∇q̃). (23.2)

It will be seen below that the presence of the pressure gradient term −∇q̃
is a small O(ε/Ly) correction to the leading O(1) flow pattern E which
appears because small normal components of the velocity are created at
the virtual interface between the bulk potential flow region and the vis-
cous boundary layer. Clearly, such normal components would not exist in
straight channels for obvious symmetry reasons, and must therefore be re-
lated to the curvature of the pore walls. The tangential components of the
velocity in the boundary layer can be directly evaluated to leading order in
terms of the E field only. Indeed, since δ is arbitrarily small at high enough
frequencies, the walls of the pore appear to be flat in the region where the
tangential velocity goes from 0 at the pore wall to the value ε2E in the pore
region. Thus, the tangential components of the velocity may be written to
leading order (Landau & Lifschitz, 1959, p. 87)

ṽ = ε2E(rw)
(
1 − e−β/ε

)
, (23.3)
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where β is a local coordinate measured from the pore wall at position rw

into the bulk of the pore: r − rw = −βn. Since E varies at the pore scale
Ly À δ, no distinction is to be made between r and rw in (23.3). Thus, we
may combine (23.2) and (23.3) and consider the velocity field ṽ, including
leading order tangential and normal components, as the solution of the
problem

ṽ = σ(r) (E −∇Π) , (23.4a)

∇ · ṽ = 0, (23.4b)

σ(r) = ε2
(
1 − e−β/ε

)
, (23.4c)

where we have introduced a stationary field Π, which is related to q̃, and
defined as

∇Π =
(
1 − e−β/ε

)−1
∇q̃, (23.5a)

in the boundary layer, and

∇Π = ∇q̃, (23.5b)

outside. The field ṽ then solves the electrical conduction problem for a
porous medium having an insulating solid phase and filled with a conducting
fluid of conductivity σ(r). Current conservation gives

−∇ · (σ∇Π) + E · ∇σ = 0. (23.6)

In the limit ε/Ly → 0, only derivatives normal to the pore walls need to
be considered in the boundary layer and it is convenient to introduce the
stretched coordinate ζ = β/ε to express the fact that σ is a function of ζ
only. In addition, the normal component of the unperturbed electric field
Eβ, which varies at scale a and is zero on the pore walls, may be replaced

by its first order term εζ
(

∂Eβ

∂β

)

β=0
. Equation (23.6) is easily integrated to

yield

∂Π

∂β
= ε

(
1 − (1 + ζ)e−ζ

1 − e−ζ

)(∂Eβ

∂β

)

β=0
. (23.7)
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We conclude that outside the boundary layer, the perturbed electric field
is of the form

−∇Π = εN, (23.8)

where N is the unique solution of the problem

N : gradient of a stationary field, (23.9a)

∇ · N = 0, (23.9b)

N · n =
(∂Eβ

∂β

)

β=0
on the pore walls. (23.9c)

We note that since Π is a stationary field, the perturbed field εN is orthog-
onal to E in an averaged sense:

〈E · N〉 = 0. (23.10)

This can be seen from the same reasoning used to obtain (22.15): because
E is divergence-free and has zero normal components on the interface, we
have 〈E·Π〉 = 0 after inegrating by parts and using the stationary character
of the fields. Explicit expressions for the velocity field inside and outside
the boundary layer result immediately. Inside the boundary layer we find,
using (23.4a), (23.4c), and (23.7):

ṽ = ε2(1 − e−β/ε)E(rw) + ε3

(
1 − (1 +

β

ε
)e−β/ε

)(∂Eβ

∂β

)

β=0
n, (23.11a)

and outside the boundary layer we have, (using (23.2), (23.5b), and (23.8)):

ṽ = ε2 (E(r) + εN(r)) . (23.11b)

As mentioned previously, small normal components of the velocity are in-
duced in the boundary layer, and these act as a source for the additional
ideal fluid flow ε3N in the bulk. Note that, though N is an ideal fluid flow,
it is related to the viscous nature of the fluid. This flow is orthogonal to the
main flow ε2E, and has non vanishing mean value. This precise represen-
tation of the velocity pattern, which however does not include higher order
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boundary layer tangential terms O(ε3/Ly) in (23.11a) and higher order bulk
terms O(ε4/L2

y) in (23.11b), is used in the next section to clarify the al-
gebra involved in the high-frequency behavior of the dynamic permeability
and tortuosity.

�
24 High-frequency permeability and tortuosity

As suggested in the previous section by the analysis of the velocity field for
materials with bounded curvature of the pore-surface interface, the high
frequency development of the dynamic permeability and tortuosity may be
written in successive powers of the viscous skin depth parameter:

α(ω) = α∞
(
1 + Cε + Dε2 + . . .

)
, (24.1a)

k(ω)

φ
=

ε2

α∞

(
1 − Cε + (C2 − D)ε2 + . . .

)
. (24.1b)

Three equivalent determinations of the C parameter will now be consid-
ered, using either (22.13), (22.16), or (22.19). The first is a new derivation
which supplements in the proper manner the incomplete determination by
Sheng & Zhou (1988). The second is equivalent to the original arguments
by Johnson et al. (1987), and the third was employed by Avellaneda &
Torquato (1991) though they did not capture all the details involved. The
third method is the simplest one, and will also be applied in

�
25 to capture

some of the effects related to the presence of sharp edges in the pore wall
geometry. We will show that in that case the set of equations (24.1) is
modified as follows:

α(ω) = α∞
(
1 + Cε + C1ε

2q + . . .
)
, (24.2a)

k(ω)

φ
=

ε2

α∞

(
1 − Cε − C1ε

2q + . . .
)
, (24.2b)

with the same inverse length C as before and the exponent q related to the
apex angle of the edges.

To proceed now in the most direct manner, we substitute (23.11a) and
(23.11b) into (22.13). Integrating the velocity field in the whole fluid volume
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we have
∫

Vf

ṽ ·e dV = ε2

∫

Vf

E ·e dV −ε2

∫

BL
e−β/εE ·e dV +ε3

∫

IF
N ·e dV, (24.3)

where the subscripts BL and IF denote integration over the boundary
layer and the ideal fluid region, respectively. Note that we have not written
the negligible contribution of the normal components of the velocity in the
boundary layer. Such contribution would be associated with the constant
D in (24.1a) and (24.1b) and is meaningless due to the higher order tan-
gential terms O(ε3/Ly) not written in (23.11a) and the higher order bulk
terms O(ε4/L2

y) not written in (23.11b). The boundary layer contribution
reduces exactly to a boundary integral −ε3

∫
Sp

E · e dS which is performed

on the boundary walls. Moreover, extending with negligible error the vol-
ume of integration in third term of (24.3) to be that of the whole fluid, and
using the orthogonality property (23.10), this third contribution is written
ε3

∫
Vf

∇Φ ·N dV . Integrating by parts, this latter contribution is also writ-

ten as a boundary integral on the pore walls, namely ε3
∫
Sp

ΦN ·n dS . We

thus obtain the result

k(ω)

φ
=

ε2

α∞
(1 − Cε + . . .) , (24.4)

with

C =
α∞
Vf

∫

Sp

(E · e − Φ
∂Eβ

∂β
) dS =

∫

Sp

(E · e − Φ
∂Eβ

∂β
) dS

/∫

Vf

E2 dV .

(24.5)
This is an important result, which allows us to compare earlier results from
literature. As it holds that

∫

Sp

Φ
∂Eβ

∂β
dS =

∫

Sp

E · ∇Φ dS, (24.6)

(see Appendix
�
30), we may write that

C =
2

Λ
=

∫
Sp

E2 dS
∫
Vf

E2 dV
. (24.7)
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where we have used (22.9a). This is the classical expression of Johnson
et al. (1987), who were the first to define the length-scale parameter Λ as
the electrically–weighted pore volume (Vf )-to-pore surface (Sp) ratio. For
tube flow, Λ equals the tube radius.

Equation (24.7) can also be obtained using the following energetic ar-
guments. From (24.1a) we derive that, to the leading order in the high
frequency limit,

Im[α(ω)]

Re[α(ω)]
= −C

δ

2
. (24.8)

On the other hand, from (22.19), we have that

Im[α(ω)]

Re[α(ω)]
=

δ2

2

〈ṽ · ∇2ṽ∗〉
〈ṽ · ṽ∗〉 . (24.9)

This means that we may write:

C = lim
δ/a→0

δ
〈ṽ · ∇2ṽ∗〉
〈ṽ · ṽ∗〉 . (24.10)

Substituting ṽ ≈ ṽ∗ ≈ E, and ∇2ṽ∗ ≈ −Ee−β/ε∗ (see (23.3)), and per-
forming the integrals immediately yields (24.7). Note that because of the
Laplacian in the numerator, there is no integration in the bulk but only a
boundary layer contribution. Note also that there is no first order contri-
bution of the perturbed potential flow εN to the denominator due to the
orthogonality with the unperturbed flow E.

Finally, another method to obtain (24.7) is to use (22.16). From (24.1b)
we have that

lim
δ/a→0

Re[
k(ω)

φ
] =

1√
2

C

α∞

( ν

ω

) 3

2

=

√
2

Λα∞

( ν

ω

) 3

2

. (24.11)

Thus, from (22.16) it follows that

C = lim
δ/a→0

√
2 α∞

(ω

ν

) 3

2

Re[〈ṽ · E〉]. (24.12)
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Now, substituting the velocity pattern (23.11) , there is no bulk contribu-
tion from the perturbed potential flow ε3N which is orthogonal to E. There
is also no bulk contribution from the unperturbed leading-order term ε2E
which is purely imaginary. There is only a simple boundary layer contribu-
tion to evaluate, which again leads to (24.7).

In literature other expressions for Λ can be found. The expression
obtained by Sheng & Zhou (1988) and Zhou & Sheng (1989) was as follows:

2

Λ
=

∫
Sp

E · e dS
∫
Vf

E2 dV
. (24.13)

We notice that this is only the first term in (24.5). The origin of the
incompleteness is the use of the “linear” average (22.13) without taking into
account the bulk contribution from the small perturbed potential field ε3N.
The same expression (24.13) can be found in Pride (1994) in the context of
electrokinetic effects for sound propagation in a porous medium saturated
with a conductive fluid. Avellaneda & Torquato (1991) tried to clarify
the discrepancy between (24.7) and (24.13) by considering higher order
terms in the boundary layer calculation suggested by Sheng & Zhou (1988).
However, the missing contribution is a bulk term and their boundary layer
analysis was still incomplete.

The effect of the perturbed bulk contribution can elegantly be illustrated
in the case of corrugated pore channels, where we will show that the use of
(22.13) instead of (22.16) yields erroneous predictions for q in (24.2a) and
(24.2b).

�
25 Corrugated pore channels

We will now investigate the influence of wedge-shaped surface asperities
on high-frequency permeability for 2D media. The wedge is depicted in
figure 25.1. It is defined by its external angle θ0, or complementary apex
angle γ = 2π−θ0. The potential field E(r, θ) is given by Landau & Lifschitz
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Figure 25.1: Schematic of the wedge and potential field E.

(1959):

Er = Aqrq−1 cos qθ (25.1)

Eθ = −Aqrq−1 sin qθ, (25.2)

where A is a constant and q = π/θ0. Introducing the dimensionless stretched
boundary layer variable % = r/ε, we find that

Er = Aqεq−1%q−1 cos qθ = O(εq−1), (25.3)

Eθ = −Aqεq−1%q−1 sin qθ = O(εq−1). (25.4)

To evaluate the high-frequency limit of the permeability, we will consider
the limit of the real part of (22.16):

lim
ε/a→0

Re[k(ω)]

φ
= lim

ε/a→0
Re〈[ṽ · E〉]. (25.5)

The integral may be split in the bulk fluid contribution from the potential
flow region and the boundary layer contribution. The general argument
leading to the decomposition (23.2) in the bulk fluid was not concerned
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(2-2h)L
γπ

hL

L

L

Figure 25.2: Geometry of two-dimensional channel with intrusive wedges
(top). Geometry of the periodic cell (bottom).

with any detailed calculation of what actually happens in the boundary
layer. Similarly, the orthogonality property −〈E · ∇q̃〉 = 0 between the
“ground state” field E and the perturbed field −∇q̃ is essentially due to
the stationary character of the pressure field q̃ and is not concerned with
the specific distribution of this field. This is why there is, as before, no
contribution to (25.5) from the potential flow region. We only have the
to evaluate the boundary layer contribution. The boundary layer may
be divided in two different parts. “Far” from the tip of the wedges, the
boundary layer will have the usual flat-surface profile. “Near” the tip of
the wedges, the boundary layer profile will be significantly different from
the flat-surface profile. The pertinent length scale giving these notions of
“far” and “near” is obviously the diffusion length of the vorticity, i.e., the
viscous skin depth δ =

√
2ν/ω. Let L be the separation between the tips of

the wedges along the pore surface (see figure 25.2). Clearly, as δ/L goes to
zero, the region of extent δ along the pore surface where the boundary layer
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is of the non-plane “near”-type is small compared to the region of extent
L where the boundary layer has the usual flat-surface profile. As will be
verified below, the leading correction −Cε in the developments (24.1) is
not affected. Here we assumed that the apex angle γ is strictly larger
than zero, so that the Johnson et al. (1987) Λ parameter remains defined.
The contributions of the wedges to (25.5) due to the non-plane “near”-type
boundary layers is now shown to produce correction terms between the
second and the third term in (24.1) as indicated in (24.2).

We consider Stokes equation (23.1)

ṽ − ε2∇2ṽ = ε2(E −∇q̃) (25.6)

in the “near”-region around the tip. In the flat-surface case, the gradient
−∇q̃ was a small correction with an extra factor ε compared to E. This
may not be the case now. The pressure gradient term −∇q̃ describes the
modification to the inertial reaction force between solid and fluid which is
due to the viscous effects. Its averaged value 〈−∇q̃〉 will be smaller, in
magnitude, than the external unit force e. Thus, using the estimate (25.3)-
(25.4) we may conclude that, to the leading order, ṽ = O(εq+1). Now
performing the integral in (25.5) around the tip of the wedge, we find that

Re[

∫ β

0

∫ θ0

0
ṽ · E dV ] = Re[ε2

∫ β/ε

0

∫ θ0

0
ṽ · E ρdθdρ] =

Re[ε2O(ε2q)] = Re[O(ε2q+2)], (25.7)

thus showing the form expressed in (24.2a) and (24.2b). This means that
for high-frequencies, using the definition of ε, from (25.5) and (25.7) it can
be written that

lim
ε/a→0

Re[
k(ω)

φ
] = Re[O(ω−(q+1))] = Re[O(ωn− 3

2 )], (25.8)

where n = 1
2 −q. The reason for the introduction of n will become apparent

in
�
27.
In a paper by Achdou & Avellaneda (1992) an analogous reasoning was

followed for the problem of corrugated pore channels. However, they did
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not multiply the velocity field ṽ by the electric field E in (25.7), thus ob-
taining an O(εq+3) dependence (see Achdou & Avellaneda (1992, eq. E7)).
However, when the linear average (22.13) is employed it is not possible to
evaluate the high frequency limit of the permeability by only considering
what happens in the boundary layer. There is a missing contribution from
the perturbed potential flow in the bulk. The significant difference between
(25.7) and the Achdou & Avellaneda (1992) result shows that in the case
of wedges the bulk contribution dominates the boundary layer contribu-
tion, whereas in the bounded curvature case both contributions were of the
same order. The behavior of the real part of the dynamic permeability will
now be investigated analytically for non-corrugated channels where (24.11)
should apply and numerically for corrugated channels where (25.7) should
apply.

�
26 Non-corrugated channels

As porous media models, Biot (1956b) discussed an ensemble of identical
slits within a 2D-solid and an ensemble of identical cylindrical tubes within
a 3D-solid. The slit opening is 2R, and the tube radius is R. The number
density of slits and tubes is represented by the porosity φ. When the fluid
flow is oriented along the cylinder axis of the tube model, it was already
shown by Zwikker & Kosten (1949) that:

k(ω)

k0
= k̃(ω) =

8

iWo2

(
1 − 2J1(i

3/2 Wo)

i3/2 WoJ0(i3/2 Wo)

)
, (26.1)

where Wo = R
√

ω/ν is the so-called Womersley number, and J0 and J1

are Bessel functions of the zeroth and first order. From the relation for
Poiseuille flow, we find that k0 = 1

8φR2. This means that the characteristic
frequency ωc = νφ/k0α∞, where transition from viscous to inertial behavior
is expected is equal to 8ν/R2 in this case, and Wo =

√
8ω/ωc. For high

frequencies, it can be shown that (Biot, 1956b):

lim
ω→∞

k̃ =
1

iω̃

(
1 − 1 − i

2
√

ω̃

)
, (26.2)
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where we have introduced ω̃ = ω/ωc. This expression is in agreement with
(24.11). This is most conveniently shown by writing (24.11) as lim

ω→∞
k̃ =

1
2

√
Mω̃−3/2, where M is the so-called shape-factor:

M = 8k0α∞/φΛ2, (26.3)

which is identical to 1 in this case. Similarly, when the flow is oriented
along the slit layers, it can be shown that (Biot, 1956b):

k̃(ω) =
k(ω)

k0
=

3

iWo2

(
1 − tanh(i1/2 Wo)

i1/2 Wo

)
. (26.4)

Here we find that k0 = 1
3φR2, so that for this configuration ωc = 3ν/R2,

and Wo =
√

3ω/ωc. The high-frequency limit is now given by:

lim
ω→∞

k̃ =
1

iω̃

(
1 − 1 − i√

6ω̃

)
. (26.5)

Also this expression is in agreement with (24.11), because for slit flow M =
2/3.

The real and imaginary parts of the dynamic permeability for both the
tube model and the slit model are plotted in figure 26.1. We notice that
there are only minor differences between both models. For low frequen-
cies, the real part of the dynamic permeability approaches the stationary
Darcy permeability, whereas the imaginary part tends to zero. For high
frequencies, the imaginary part of the dynamic permeability shows a −1/ω̃
dependency for both tube and slit model, whereas for the real part the
ω̃−3/2 behavior can be discerned. We also notice that the rollover from
low-frequency viscous behavior to high-frequency inertia behavior is ob-
served at ω ≈ ωc indeed.

�
27 Numerical computations

Numerical computations were performed on the periodic polygon P1...P7,
depicted in figure 25.2. The cell P1P5P6P7 is a square with sides Lw. The
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Figure 26.1: Dynamic permeability for tube flow (dashed line) and slit flow
(solid line)

apex angle of the wedge is γ, and its height is hLw, thus leaving a chan-
nel opening (2 − 2h)Lw (see figure 25.2). Numerical results are presented
for varying γ where h is set 0.5, and for varying h, where tan γ/2 is set
0.5. Taking the pressure gradient in the horizontal direction, the Stokes
problem (22.3a), (22.3b) was solved using a Finite-Element code based on
a Uzawa decomposition method. A Dirichlet-type boundary condition was
prescribed at the pore walls: ṽ = 0. The solution to the Stokes problem is
approximated by means of N1 finite elements and by using the variational
formulation of the problem. To ensure accuracy, we have used an iterative
automatic method, i.e., the solution is computed on the N1 mesh, next an
a-posteriori estimate of the error is computed, and finally the mesh is locally
refined accordingly by means of a Delaunay technique developed by Rebay
(1993). Successful use of this refinement method on sharp-edged wedges
was reported by Firdaouss et al. (1998). Once the flow field is know, the
dynamic permeability is computed using (22.13).
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Figure 27.1: Dynamic permeability for tan γ/2 = 0.5 (top), and tan γ/2 =
0.1 (bottom). In both figures h = 0.5. The circles and dots represent the
numerical results. Both classical (drawn lines) and improved (dashed lines)
high-frequency approximations for Re[k̃] are plotted.
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Two typical results are shown in figures 27.1, where the real and imag-
inary parts of the dynamic permeability are plotted for tan γ/2 = 0.5 and
for tan γ/2 = 0.1. In both cases, h = 0.5. The high-frequency approxi-
mation 1

2

√
Mω̃−3/2 is drawn as straight lines in both plots. An improved

high-frequency approximation is also drawn (dashed line), which will be
discussed in the forthcoming. The parameters M and ωc were computed
independently (Cortis & Smeulders, 2001). We notice that in both cases
the −1/ω̃-dependency for the imaginary part of the dynamic permeability
is preserved for high frequencies. For the real part of the dynamic per-
meability, however, significant departures from the predicted 1

2

√
Mω̃−3/2

behavior are found. Apparently, these discrepancies become more signifi-
cant for smaller apex angle, i.e., for sharper edges (see figures 27.1). These
findings are in agreement with those of Achdou & Avellaneda (1992) who
reported that the presence of a wedge in the flow channel induces a non-
analytic dependence on the viscous skin depth δ =

√
2ν/ω, and a slower

convergence of k̃(ω) to its asymptotic limit than predicted by (24.11). They
subsequently argue that the high-frequency behavior should be described as
the combination of the asymptotic expansion (24.11) for laminar boundary
layers and the contribution of the singularity as described in

�
24:

lim
ω→∞

Re[k̃(ω)] =
1

2

√
M ω̃− 3

2 (1 + C1ω̃
n) , (27.1)

or alternatively

lim
ω→∞

ω̃
3

2 Re[k̃(ω)] =
1

2

√
M +

1

2
C1ω̃

n
√

M, (27.2)

where C1 is a numerical constant and the exponent n is related to the wedge
angle γ. In

�
24 it is derived that n = 1

2−q = −1
2γ/(2π−γ) whereas Achdou

& Avellaneda (1992) arrived at n = −1
2q = −1

2π/(2π − γ). We notice that
for C1 = 0, we find back the asymptotic behavior (24.11). Our precise
numerical computations now offer the possibility of determining the values
of n and also M independently. In figure 27.2, we plotted the derivative
∂[ω̃3/2Rek̃(ω)]/∂ω̃ against ω̃ on a double logarithmic scale for various apex
angles γ. This derivative was computed by means of a three point centered
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Figure 27.2: Regression lines to determine the n parameter for h=0.5. We
notice that the computed values fit very well the regression lines.

finite difference method. We notice that for high frequencies, these curves
become straight lines, which is in agreement with (27.2). Linear regression
now yields the slope of the curve (n − 1), and the value 1

2C1n
√

M . Conse-

quently, the value of 1
2C1

√
M is also known. Finally, M is obtained from

linear regression of ω̃
3

2 Re[k̃(ω)] versus ω̃n.

The results are given in table 27.1, and figures 27.3 and 27.4. We no-
tice that the present theory is only slightly overestimating the numerical
results. The Achdou & Avellaneda (1992) predictions give a considerable
underestimation of the computations. In the limiting case of knife-edge
singularities (γ = 0), there is a good agreement between the computations
and the present theory. We also notice that the M values are in good
agreement with the classical value (Johnson et al., 1987) M = 8Fk0/Λ2 .
This suggests that this definition for M is also correct in the case of surface
roughness, and that the contribution of the singularities can indeed be cap-
tured in a non-analytic extension of the existing theory without affecting
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Figure 27.3: Computed and theoretical n values for h = 0.5.
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Figure 27.4: Computed and theoretical M values for h = 0.5.
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tan γ/2 n M

present work A&A present work JKD

computations theory theory computations theory

0.0 −0.006 -0.0000 -0.2500 992.74 ∞
0.1 −0.018 -0.0164 -0.2582 32.42 35.4123

0.2 −0.044 -0.0335 -0.2668 6.86 9.4607

0.3 −0.073 -0.0511 -0.2756 3.47 4.7652

0.4 −0.087 -0.0689 -0.2845 2.55 3.0124

0.5 −0.110 -0.0866 -0.2933 1.92 2.1820

0.6 −0.120 -0.1039 -0.3019 1.62 1.7223

0.7 −0.137 -0.1207 -0.3103 1.39 1.4299

0.8 −0.153 -0.1368 -0.3184 1.22 1.2543

0.9 −0.179 -0.1521 -0.3261 1.09 1.1305

Table 27.1: Values of the n-parameter obtained from linear regression ap-
plied to our numerical computations are compared with present work (n =
1/2− q) and Achdou & Avellaneda (1992) (A&A) predictions (n = −q/2).
Values of the M -parameter obtained from linear regression are compared
with the Johnson et al. (1987) (JKD) theory. h = 0.5.

the parameters of such theory. We notice that when γ = 0, our computa-
tions yield a large though finite value for M , while the value obtained from
the theory is infinite. The obtained results for n and M are substituted in
the high-frequency correction (27.1), which is plotted in figures 27.1. As
expected, we find excellent agreement.

The effect of the channel opening was checked by varying the intrusion
height h, while keeping tan γ/2 = 0.5. Obviously this should not affect the
value for n, which only depends on the apex angle γ. It can be predicted
that n = −0.0866, whereas Achdou & Avellaneda (1992) arrive at n =
−0.2933. Our computations are summarized in table 27.2. We notice that
for very small intrusion heights, the computations start to deviate from the
theory, because the effect of the flat wall is predominant over the effect of
the singularity. On the other hand, for very small openings, the results also
deviate from theory since the presence of the opposite wedge disturbs the
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h n

computations

0.1 −0.215

0.2 −0.174

0.3 −0.108

0.4 −0.117

0.5 −0.110

0.6 −0.121

0.7 −0.134

Table 27.2: Computed n-values for tan γ/2 = 0.5. The predicted value is
−0.0866. The Achdou & Avellaneda (1992) prediction is −0.2933.

flow field with respect to the assumptions made in
�
24. We notice that

good results are obtained for h = 0.5, which is the value we used for the
computations in table 27.1.

�
28 Conclusions

We analyzed in detail the high-frequency fluid velocity patterns in the bulk
fluid and the boundary layer for smooth and corrugated geometries. The
classical Johnson et al. (1987) high-frequency limit for smooth geometries
was obtained in different manners, thus clarifyng the discrepancy with the
Sheng & Zhou (1988) treatment and the Avellaneda & Torquato (1991)
approach. The discrepancies were illustrated for corrugated pore channels,
where the bulk contribution dominates the contribution from the bound-
ary layer, which causes a slower convergence of k(ω) to its asymptotic limit
than predicted from the classical theory by Johnson et al. (1987). This
behavior is captured in a non-analytic extension of the classical expres-
sions as was proposed by Achdou & Avellaneda (1992). This extension
represents the contribution of the wedge-shaped singularity. We investi-
gated the dependency of the extension term on the wedge angle of the
intrusion in the corrugated channels. For various angles, we numerically
computed the dynamic permeability by means of a precise Finite Element
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solver for the Stokes’ flow. The effect of varying channel opening was in-
vestigated separately. The dependency of the extension term on the wedge
angle was validated by our numerical results, whereas the Achdou & Avel-
laneda (1992) predictions underestimated them. Moreover, we found that
the contribution of the singularities does not affect the original parameters
of Johnson et al. (1987) theory.

Appendices to Chapter IV

�
29 Energetic representation of the dynamic tortuosity

Here we derive the relation (22.19) using the eigenmode formalism. First
define the notation

σ̃n =
σn

1 + iωσn/ν
(29.1)

and the mean symbol

‖Xn‖ =
∞∑

n=1

b2
nXn. (29.2)

Then (22.14) and (22.18) read

k(ω)

φ
= ‖σ̃n‖, (29.3)

and

α(ω) =
ν

iω‖σ̃n‖
. (29.4)

From (29.4) we write

α(ω) =
ν

iω

‖σ̃∗
n‖

‖σ̃n‖ ‖σ̃∗
n‖

, (29.5)

where ∗ denotes complex conjugation. Combining (29.5) with the identity

‖σ̃∗
n‖ =

iω

ν
‖σ̃nσ̃∗

n‖ + ‖σ̃nσ̃∗
nσ−1

n ‖ (29.6)
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we get

α(ω) =
‖σ̃nσ̃∗

n‖
‖σ̃n‖‖σ̃∗

n‖
+

ν

iω

‖σ̃nσ̃∗
nσ−1

n ‖
‖σ̃n‖‖σ̃∗

n‖
, (29.7)

where the form of (22.19) may be recognized. Using (22.4a), it is easy to
verify that

〈ṽ〉 · e = ‖σ̃n‖ (29.8)

and
〈ṽ · ṽ∗〉 = ‖σ̃nσ̃∗

n‖. (29.9)

Using (22.5a) we finally verify that

−〈ṽ · ∇2ṽ∗〉 = ‖σ̃nσ̃nσ−1
n ‖. (29.10)

�
30 Proof of the identity (40)

We want to prove the identity
∫

Sp

E · ∇Φ dS =

∫

Sp

Φ
∂Eβ

∂β
dS. (30.1)

Let us denote with ξi and ξi contravariant and covariant quantities respec-
tively. The metric is such that gµνdξµdξν = ds2. Let the indices µ and ν
run over 1,2,3, and the indices i and j run over 1,2.

∫

Sp

E · ∇Φ dS =

∫

Sp

(eµ − gµνΦ,ν)Φ,µ dS =

∫

Sp

[(eµ − gµνΦ,ν)Φ],µ dS −
∫

Sp

Φ (eµ − gµνΦ,ν),µ dS. (30.2)

The second integral on the RHS immediately vanishes: eµ
,µ is the divergence

∇ · e = 0, and (gµνΦ,ν),µ = Φ,µ
,µ is the Laplacian ∇2Φ = 0. The first

integral is
∫

Sp

[(eµ − gµνΦ,ν)Φ],µ dS =

∫

Sp

[(
ei − gijΦ,j

)
Φ

]
,i

dS +

∫

Sp

[(
e3 − g33Φ,3

)
Φ

]
,3

dS. (30.3)
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The first term in the RHS vanishes because of the stationarity character of
the fields. In the second term there is no difference between the covariant
and the contravariant position. We get

∫

Sp

(
e3Φ,3 − Φ,3Φ,3 − ΦΦ,3,3

)
dS =

∫

Sp

−ΦΦ,3,3 dS. (30.4)

Making the identification ,3 = ∂β we obtain the desired result.
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Numerical validation of scaling functions for

viscous and thermal relaxation in gas-filled

porous media

In this Chapter, we investigate two general analytical scaling functions de-
scribing the viscous and thermal dynamic behavior. In

�
31 we introduce

the Johnson et al. (1987) and Pride et al. (1993) viscous models, and the
Champoux & Allard (1991) and Lafarge et al. (1997) thermal models. In
�
32 the macroscopic parameters governing these viscous and thermal scal-

ing functions are computed for regular ensembles of cylindrical and squared
fibers at different porosities. Analytical solutions valid for the cylindrical
fibers at high porosities are compared to the numerical data. In

�
33, we

present Finite Element numerical computations of the viscous and thermal
frequency-dependent tortuosity for these arrangements of cylindrical and
squared fibers, and we compare them to the scaling functions predictions.
In

�
34, the causality condition for the Pride scaling function is investigated.

Finally, in Appendix
�
36, a new scaling function is proposed.

�
31 Scaling functions

In this section we introduce a general analytical scaling functions for both
the viscous and thermal effects. It was noted by Johnson et al. (1987) that

k(ω)

k0
= [F (ω) + iω̃]−1 , (31.1)

89
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where

F (ω) =

√
1 +

M

2
iω̃. (31.2)

This function satisfies both the high-frequency behavior discussed in Chap-
ter IV and the low-frequency behavior

lim
ω→0

k(ω) = k0. (31.3)

Based on arguments of similarity, Champoux & Allard (1991) defined a
thermal scaling function

F ′(ω) =

√
1 +

M ′

2
iω̃′, (31.4)

where ω̃′ = ω/ω′
c, and M ′ = 8k′

0/φΛ′2. It was noted by Pride et al. (1993)
that for some numerical and experimental data large discrepancies occurred
between the data and the scaling functions for the imaginary part of of k(ω)
at low frequencies. It was argued that the reason for these discrepancies
is that the scaling function (31.2) does not require the imaginary part of
k(ω) to satisfy the exact frequency dependency in the limit ω ¿ ωc. They
therefore introduced a modified scaling function

F (ω) = 1 − m + m

√
1 +

1

2

M

m2
iω̃, (31.5)

where m is a correction factor for low frequencies. We notice that for m = 1,
both scaling functions (31.2) and (31.5) are equal. In this Chapter, we will
compare (31.2) and (31.5) with numerically obtained dynamic permeability
values for a variety of two-dimensional configurations, whereas Pride et al.
(1993) only gave analytical solutions of sinusoidally varying tubes.

Another important aspect of porous media acoustics is the heat ex-
change between the fluid and the solid constituents. Similar to the vis-
cous case, where the dissipation of energy is governed by the viscous re-
laxation time L2

y/ν, the thermal dissipation is governed by the thermal
relaxation time L2

y/af , where af is the thermal diffusivity of the fluid. For
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water, af = 144 × 10−5 m2/s, which means that thermodynamic effects
can be ignored for usual acoustic materials with Ly ≈ 10−4m. For air,
af = 1.87 × 10−5 m2/s however, which means that significant deviations
from isothermal conditions may occur in the higher frequency range. This
is a well-know phenomenon in damping phenomena of pulsating gas bub-
bles in liquids (Devin, 1959), where the heat conduction between the gas
and the liquid is taken into account by introducing a frequency-dependent
gas bulk modulus Kf (ω) = n(ω)Kf0, meaning that the isothermal gas bulk
modulus Kf0 is modified by the polytropic coefficient n(ω). To account for
the thermal dissipation in gas-filled porous media, it seems reasonable to
replace the gas bubble radius by the pore volume-to-surface ratio 2Vp/S
as the characteristic length scale. This ratio is sometimes referred to as
the Kozeny radius Λ′. It generalizes the notion of hydraulic radius for ar-
bitrary geometries, and reduces to it for cylindrical pores. Champoux &
Allard (1991) used the concept of dynamic permeability to obtain a gen-
eral phenomenological frequency dependence for the dynamic bulk modulus
Kf (ω). In later years, the analogy between viscous and thermal dissipation
was implemented further by Lafarge et al. (1997) who defined a thermal
permeability k′(ω) and a thermal tortuosity α′(ω):

λφ

k′ (ω)
〈T̂ 〉 = iω〈p̂〉, (31.6)

iωα′(ω)ρfcp〈T̂ 〉 = iω〈p̂〉, (31.7)

where 〈T̂ 〉 is the macroscopic excess temperature, and λ and cp are the ther-
mal conductivity and the specific heat at constant pressure, respectively.
This implies that thermal scaling functions analogues to (31.2) and (31.5)
can be introduced to describe the transition from low-frequency isothermal
to high-frequency isoentropic behavior.

These viscous and thermal scaling functions will be compared with nu-
merical results for regular ensembles of cylindrical and squared fibers.
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S̄L
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R̄L
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Figure 32.1: Configurations studied: (A) 2D arrangement of solid cylinders
surrounded by fluid; (B) 2D arrangement of solid squares surrounded by
fluid.

�
32 Viscous and thermal coefficients

Numerical computations of viscous and thermal dynamic permeability were
performed for two types of porous media presented in figures 32.1. They
consist of regular ensembles of cylindrical (figure 32.1A) and squared (fig-
ure 32.1B) fibers, having center points 2L apart. These materials are sub-
jected to a stationary flow field perpendicular to the fibers. The problem is
thus two-dimensional. The radius of the cylinder, R, varied between 0.113L
and 0.944L, so that the corresponding porosity φ = 1 − π(R/L)2/4 varied
between 0.99 and 0.3. The side of the square, S, varied between 0.2L and√

1.8L, so that the porosity φ = 1− (S/L)2/4 varied between 0.99 and 0.55
in this case.

For the regular arrangement of cylinders depicted in figure 32.1A, it is
possible to write analytical solutions, valid in the limit of high porosities,
for both the viscous and the thermal problems. In fact, at high-porosities,
it should not be a problem to replace the square boundary of the unit cell
by a circle as we expect that the flow field has practically no variation far
away from the obstacle (Kuwabara, 1959). We choose the radius of this
circle equal to R/

√
1 − φ such that the porosity remains unchanged. The
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Figure 32.2: Plot of the static viscous and thermal permeabilities k0 and
k′

0 for the cylinders (C) and the squares (S) compared with the analytical
solution for a dilute cylinder configuration (lines).

vorticity and the normal component of the velocity can thus be assumed
to be zero at a radial distance R/

√
1 − φ from the center. Let us assume a

system of cylindrical coordinates (r, θ) normalized with respect to R.

For the potential problem, the velocity field v∞ can be expressed as

v∞(r, θ) = −∇ψ(r, θ), (32.1)

where the potential ψ satisfies

∇2ψ(r, θ) = 0, (32.2)

with the impermeability condition on the boundary wall

∂ψ

∂r
= 0 for r = 1, (32.3a)
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Figure 32.3: Plot of the viscous tortuosity α∞ for the cylinders (C) and the
squares (S) are compared with the analytical solution for a dilute cylinder
configuration (lines).

and the condition on the average velocity, 〈v∞〉 = 1,

1

c − 1

∫ c

1

∂ψ

∂θ
= −1, (32.3b)

where c = 1/
√

1 − φ is the normalized distance of the boundary from the
center of the fiber. The solution of (32.2) and (32.3) reads:

ψ(r, θ) = − c

c + 1
(r +

1

r
) cos θ. (32.4)

Substituting (32.4) in (22.10) and (24.13) yields the following expressions
for the tortuosity α∞

α∞ =
c2 + 1

c2
, (32.5)
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Figure 32.4: Plot of the characteristic viscous and thermal lengths Λ and
Λ′ for the cylinders (C) and the squares (S) compared with the analytical
solution for a dilute cylinder configuration (lines).

and the characteristic viscous length Λ

Λ

R
=

(
c2 − 1

) (
c2 + 1

)

2c2
, (32.6)

which normalized with respect to L reads

Λ

L
=

1√
π

(
c2 − 1

) (
c2 + 1

)

c3
. (32.7)

For the thermal problem, the temperature field T (r), solution of ∇2T = −1,
with the boundary conditions T (1) = 0, and ∂T (c)/∂r = 0, can be written

T (r) =
1 − r2

4
+

c2

2
ln r. (32.8)
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Figure 32.5: Plot of the characteristic viscous and thermal tortuosities α0

and α′
0 for the cylinders (C) and the squares (S) compared with the analyt-

ical solution for a dilute cylinder configuration (lines).

Substituting (32.8) in (11.11), it is possible to write an expression for the
thermal permeability k′

0

k′
0

R2
= φ

4c4 ln c − 3c4 + 4c2 − 1

8(c2 − 1)
, (32.9)

which normalized with L2 reads

k′
0

L2
=

4 ln c − 3 + 4c−2 − c−4

2π
. (32.10)
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For the static thermal tortuosity α′
0 = lim

ω→0
α′(ω) = 〈T 2〉/〈T 〉2, we find that

α′
0 =

2(−1 + c2)

3(1 − 4c2 + 3c4 − 4c4 ln(c))2

[
− 2 + 15c2 − 30c4+

17c6 + 12c4 ln c(2 − 3c2 + 2c2 ln c)
]
. (32.11)

We notice that for characteristic thermal length Λ′ = 2Vf/Afs we have the
exact expression

Λ′

R
= c2 − 1, (32.12)

valid for all porosities. Normalizing (32.12) with respect to L yields

Λ′

L
=

1√
π

c2 − 1

c
. (32.13)

For the Stokes flow, the velocity v = (vr, vθ) can be expressed in terms
of the stream function Ψ as vr = r−1∂Ψ/∂θ, and vθ = −∂Ψ/∂r. The stream
function Ψ satisfies the equation

∇2(∇2Ψ) = 0, (32.14a)

with the boundary conditions on the velocity

vr = U cos θ, for r = c, (32.14b)

∇2Ψ = 0, for r = c, (32.14c)

vr = vθ = 0, for r = 1, (32.14d)

where U is the velocity of the mean flow parallel to the line θ = 0. The
solution of (32.14) reads

Ψ(r, θ) =
c2

(4 ln c − 3)c4 + 4c2 − 1

[
(2c2 − 1)

1

r

− (2c2 − 2)r + 4c2r ln r − r2
]
sin θ. (32.15)
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From the Stokes equation ∇p = η∇2v, it is possible to compute the pressure

p(r, c) = −8
c2

(4 ln c − 3)c4 + 4c2 − 1

(
c2

r
+

r

c2

)
cos θ + C, (32.16)

where C is an additive constant. The macroscopic pressure gradient ∇x〈p〉
along the x direction can be written as

∇x〈p〉 =
−p(c, π − θ) + p(c, θ)

2c cos θ
= −8

c2

(4 ln c − 3)c4 + 4c2 − 1
. (32.17)

Writing the Darcy equation in the form φηU = −k0∇x〈p〉, we obtain an
expression for the permeability k0

k0

R2
= φ

(4 ln c − 3)c4 + 4c2 − 1

16(c2 − 1)
, (32.18)

and normalizing with respect to L2

k0

L2
=

4 ln c − 3 + 4c−2 − c−4

4π
. (32.19)

For the static thermal tortuosity α0 = lim
ω→0

α(ω) = 〈|v|2〉/〈|v|〉2, we find

that

α0 =
(−1 + c2)

3(−c + 4c3 − 3c5 + 4c5 ln c)2

[
(c2 − 1)(3 − 13c2 − 7c4 + 41c6)

+ 24c4(1 − 3c4 + 2c4 ln c) ln c
]
. (32.20)

It is also possible to compute the viscous and thermal coefficients nu-
merically. The viscous permeability k0, the tortuosity α∞, the static viscous
tortuosity α0 and the characteristic viscous length Λ are computed using a
Finite Element code developed by Guermond based on the Uzawa decom-
position method (Cortis et al., 2001). The thermal permeability k′

0 and
the thermal tortuosity α′

0 are computed using the Finite Element package
SEPRAN (Cuvelier et al., 1986).
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φ k0/L2 α∞ α0 Λ/L M Mdil

0.30 2.9200×10−4 2.2345 2.7051 0.1773 0.5536 0.7122

0.40 2.2680×10−3 1.7366 2.1121 0.3601 0.6074 0.7225

0.50 7.5100×10−3 1.5400 1.8805 0.5365 0.6429 0.7269

0.60 1.8356×10−2 1.4105 1.7297 0.7186 0.6685 0.7211

0.70 3.8876×10−2 1.3020 1.6009 0.9256 0.6753 0.6969

0.80 7.7630×10−2 1.2001 1.4675 1.2093 0.6371 0.6373

0.90 1.6107×10−1 1.0999 1.3092 1.7668 0.5045 0.4976

0.95 2.5708×10−1 1.0500 1.2096 2.5189 0.3583 0.3542

0.97 3.3243×10−1 1.0300 1.1605 3.3228 0.2558 0.2637

0.99 5.0113×10−1 1.0099 1.0955 5.6533 0.1280 0.1276

Table 32.1: Characteristic viscous parameters for the arrangement of cylin-
ders.

φ k′
0/L2 α′

0 Λ′/L M ′ M ′
dil

0.30 8.3940×10−3 1.5854 0.4046 1.3673 0.6054

0.40 1.5589×10−2 1.5043 0.5827 0.9183 0.5780

0.50 2.8297×10−2 1.3799 0.7979 0.7112 0.5452

0.60 5.0514×10−2 1.2750 1.0705 0.5878 0.5048

0.70 8.9835×10−2 1.2020 1.4421 0.4937 0.4530

0.80 1.6329×10−1 1.1514 2.0186 0.4007 0.3824

0.90 3.2507×10−1 1.1074 3.2117 0.2801 0.2737

0.95 5.1506×10−1 1.0803 4.7946 0.1887 0.1860

0.97 6.6519×10−1 1.0654 6.3207 0.1373 0.1358

0.99 1.0023 1.0428 11.1784 0.0648 0.0644

Table 32.2: Characteristic thermal parameters for the arrangement of cylin-
ders.
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φ k0/L2 α∞ α0 Λ/L M

0.55 9.3775 × 10−4 2.0509 2.5525 0.2254 0.5506

0.60 4.0068 × 10−3 1.7251 2.1500 0.3768 0.6491

0.70 1.8911 × 10−2 1.4306 1.7869 0.6355 0.7656

0.80 5.3356 × 10−2 1.2579 1.5616 0.9243 0.7855

0.90 1.3451 × 10−1 1.1220 1.3538 1.4174 0.6677

0.95 2.3056 × 10−1 1.0600 1.2348 2.0431 0.4931

0.97 3.0616 × 10−1 1.0358 1.1779 2.6481 0.3730

0.99 4.7542 × 10−1 1.0119 1.1038 4.6021 0.1835

Table 32.3: Characteristic viscous parameters for the arrangement of
squares.

φ k′
0/L2 α′

0 Λ′/L M ′

0.55 4.2983×10−2 1.3703 0.8199 0.9301

0.60 5.3081×10−2 1.3424 0.9487 0.7864

0.70 8.5593×10−2 1.2538 1.2780 0.5989

0.80 1.5108×10−1 1.1766 1.7889 0.4721

0.90 3.0451×10−1 1.1188 2.8461 0.3342

0.95 4.9032×10−1 1.0869 4.2485 0.2288

0.97 6.3876×10−1 1.0700 5.6003 0.1680

0.99 9.7404×10−1 1.0451 9.9000 0.0803

Table 32.4: Characteristic thermal parameters for the arrangement of
squares.
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The macroscopic parameters for the different configurations are pre-
sented in tables 32.1, 32.2, 32.3, and 32.4. The parameters αJKD

0 , and
α′JKD

0 reported in these tables will be discussed in the following section.
From the knowledge of the analytic solutions for the cylinders case, we can
compute the values of the shape factors Mdil and M ′

dil, where the subscript
dil stands for dilute. These values are also reported in the tables.

In figures 32.2 to 32.5 we plotted the expressions in (32.5), (32.7),
(32.10), (32.11), (32.13), (32.19), and (32.20), and the numerical results
obtained computing the static viscous and thermal problems for both the
cylinders and the squares. We notice that the dilute cylinders analytical
solutions show an excellent agreement with the full numerical computations
of the cylinders for values of the porosity φ > 0.7. Only the static thermal
tortuosity α′

0 shows an agreement with computations starting from φ > 0.9.
From figure 32.2, we notice that the limit of the viscous and thermal per-
meabilities k0 and k′

0 goes to infinity for φ = 1 for both the cylinders and
the squares. This is nothing else than the so-called Stokes paradox (Lamb,
1932). However, this paradox is solved noticing that we are interested in
the ratio of k0/Λ2 and, from figure 32.4, we observe that the characteristic
lengths Λ tends also to infinity for φ that tends to one. In fact, it can be
seen from (32.7) and (32.19) that the ratio k0/Λ2

k0

Λ2
= (1 − φ)

(
−3

4
− 1

2
ln(1 − φ)

)
+ O

(
(1 − φ)3/2

)
(32.21)

remains always bounded, and goes to zero for φ = 1.

We notice that for high porosities, also the values for the squares follow
the dilute cylinder predictions. The value of k′

0 for the squares and the
cylinders remain very much the same for all porosities, whereas deviations
between k0 for the cylinders and the squares can be observed for φ < 0.9.
Analogously to the case of the thermal permeabilities, also the characteristic
thermal lenghts for the cylinders and the squares show a trend agreement
for all values of porosity. A kind of “thermal” Stokes paradox also holds
for the thermal permeability k′

0. Analogously to the viscous case, it can be
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seen from (32.10) and (32.13) that the ratio k′
0/Λ′2

k′
0

Λ′2 = (1 − φ)

(
−3

2
− ln(1 − φ)

)
+ O

(
(1 − φ)3/2

)
(32.22)

remains bounded for φ that tends to one.

�
33 Direct dynamic numerical computations

In order to establish the validity of the Johnson and Pride scaling func-
tions, we performed a large set of numerical simulations on the 2D porous
media configurations depicted in figures 32.1. A detailed description of the
geometries in figure 32.1 is given in

�
32. The full dynamic flow problem

(10.8) was solved using a Finite-Element based on the Uzawa decomposi-
tion method (Cortis et al., 2001). The range of frequency chosen for the
direct computations was between ω̃ = 0.01 and 100. We used an algorithm
for the refinement of the FEM grid developed by Rebay (1993) which was
already proved to be effective in Firdaouss et al. (1998), and Cortis et al.
(2001). The full dynamic thermal problem (10.9) was solved using the Fi-
nite Element package SEPRAN (Cuvelier et al., 1986). In order to better
appreciate the differences at low frequencies between the computations and
the models, we choose to represent the results as the real part of α(ω)− 1.
Typical results are presented in figures 33.1 and 33.2.

In figure 33.1 (top) we plotted the results of the viscous problem for
the cylinders configurations at two different porosities, namely φ = 0.4 and
0.99. At high porosities, we observe that Johnson model deviates from the
aforementioned scaling behavior. Please note that, for high porosities and
at a frequency ω̃ ≈ 100, the thickness of the viscous boundary layer δ is
of the same order of magnitude of radius of the cylinder R, and the effects
of the curvature of the pore wall on the potential flow in the bulk become
predominant.

As expected, at low frequency, Johnson model was found to be off for all
porosities deviating from M/(4m), the theoretical limit predicted by Pride
model and confirmed by the direct dynamic computations.
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Figure 33.1: Plot of the real part of the dynamic tortuosity minus one, for
an arrangement of solid cylinders at two different porosities φ = 0.4 and
φ = 0.99. Top: viscous case. Bottom: thermal case.
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Figure 33.2: Plot of the real part of the dynamic tortuosity minus one, for
an arrangement of solid squares at two different porosities φ = 0.55 and
φ = 0.99. Top: viscous case. Bottom: thermal case.
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The bottom plot in figure 33.1, shows the thermal dynamic computa-
tions of α′(ω)− 1 for the arrangement of cylinders. As for the viscous case,
the high frequency limit is correctly predicted by both models for high and
middle-range porosities, whereas at low frequencies, Johnson model start
to deviate (see bottom figure 33.1 for φ = 0.99) Also in this case, the low
frequency limit of the Johnson model yields an incorrect prediction for α′

0,
at all porosities.

In figures 33.2, we plotted Re[α(ω)]−1 (top) and Re[α′(ω)]−1 (bottom)
for the squares configuration at two different porosities, φ = 0.55 and 0.99.
Analogously to the case of the cylinders, the Pride model (dashed line)
perfectly predicts the direct numerical computations in both the high and
low frequency at all porosities. Johnson model (drawn lines) converges to
a lower value for α0, and α′

0 at all porosities, and start to deviate from the
high frequency limit for high values of the porosity.

A comparison of the low frequency limits for the viscous and thermal
static tortuosity of Johnson model (αJKD

0 , and α′JKD
0 ) and Pride model

(α0, and α′
0), is presented in tables 32.1, 32.2, 32.3, 32.4. We notice that

Johnson prediction (αJKD
0 , and α′JKD

0 ) underestimates the actual value (α0,
and α′

0) for all values of φ, for both the cylinders and the squares.

�
34 Causality

We want to investigate for which values of the parameters m, and M the
dynamic permeability corresponding to the Pride model is causal.

It is obvious that once the causality requirement is satisfied for the
viscous scaling function, then it is automatically satisfied for the thermal
scaling function too, since the two functions differ only for the definition
of their parameters. Therefore, we shall carry out our analysis on the
viscous scaling function only. In fact, the causality requirement for a model
function is equivalent to the require that all the poles of the model function
itself belong to the upper plane of the complex frequency, Im[ω] > 0. The
analyticity and the long wavelength condition are satisfied when all the
zeros, poles, and branch points lie on the positive imaginary axis of the
complex frequency plane (Johnson et al., 1987).
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Figure 34.1: Graphical illustration of the allowed region of parameters in
the (m, M) plane for the Pride model.

The only branch point, ω̃b, of k(ω) for the Pride model, is found from
the square root in the complex-valued expression, and satisfies the condition

1 +
M

2m2
iω̃b = 0, (34.1)

from which we see that ω̃b lies on the imaginary positive axis, posing, there-
fore, no problems. We now analyze the poles of k(ω) (the zeros of of α(ω)).
We have a pole of the permeability when ω̃p verifies

1 − m + m

√
1 +

M

2m2
iω̃p + iω̃p = 0. (34.2)

There are no other singularities of the permeability. Thus, to establish
causality, it would suffice that all the solutions ω̃p of (34.2) have Im[ω̃p] ≥ 0.
The long wavelength condition requires, in addition, Re[ω̃p] = 0. Please



�
35 ] 107

notice that a solution of (34.2) is necessarily one of the two quantities

iω̃p = 1 − m +
M

4
±

√(
m +

M

4

)2

− M

2
. (34.3)

It is possible to locate three different regions in the (M, m) plane. When
m >

√
M/2 − M/4, we have that Im[ω̃p] ≥ 0 and Re[ω̃p] = 0, i.e., Pride

model is causal and respects the long wavelength condition. On the other
hand, when m <

√
M/2 − M/4, we find that Re[ω̃p] 6= 0, which means

that Pride does not respect the long wavelength condition and is thus not-
allowed. We can split the region m <

√
M/2−M/4 in two sub regions, viz,

the region m < 1 − M/4 for which Im[ω̃p] ≥ 0 and Pride model is causal,
and the region m > 1 − M/4 for which Im[ω̃p] ≤ 0 and Pride model is not
causal. These three regions are illustrated in figure 34.1.

In figure 34.2, we plotted values for the viscous and thermal parameters
m, m′, M , and M ′ in a similar figure as figure 34.1. The m-values are
obtained from the relations

m =
M

4(α0/α∞ − 1)
; m′ =

M ′

4(α′
0 − 1)

; (34.4)

Also the values estimated from the Chapman & Higdon (1992) dynamic
computations on arrangement of spheres are plotted. We notice that causal-
ity is respected indeed. Moreover, our numerical data and the Chapman &
Higdon (1992) 3D computations agree very well.

�
35 Conclusions

We analyzed two scaling functions, namely the Johnson et al. (1987) model
and the Pride et al. (1993) model, describing the frequency-dependent vis-
cous and thermal interaction of an ideal gas saturating a porous medium.
These two models depend on two parameters, M and m, whose value is
determined once the microgeometry of the porous material is given. We
performed a large set of direct dynamic computations of the viscous and
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Figure 34.2: Values of the shape factors m, and M , for the cylinders (Cyl)
and the squares (Sq), for the viscous (V) and thermal case (T). Comparison
with the estimated values obtained from the Chapman & Higdon (1992)
3D-spheres computations: (SC): simple cubic, (BCC): body centered cubic,
(FCC): face centered cubic. The drawn line defines the allowed region of
parameters for the Pride model.

thermal problems on microgeometries consisting in arrangements of cylin-
drical and squared fibers at different porosities. We then computed the
model parameters for these geometries and compared the direct dynamic
computations with the corresponding Pride and Johnson scaling functions.
We found that, at low frequency, Johnson model is off for all values of
porosities, both for the viscous and the thermal problem. Excellent agree-
ment was found between the Pride model and the direct computations, at
low and high frequencies, for both the viscous and the thermal problem in
the whole porosity range.
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Appendix to Chapter V

�
36 Causal models for viscous and thermal dynamic

dissipation

In the present section we propose an expression for the viscous and thermal
scaling functions as follows. We give two different expressions for 2D and
the 3D case respectively. Let’s define:

z =

√
P

p2
3iω̃, M =

8k0α∞
φΛ2

, m =
P

4
(

α0

α∞
− 1

) . (36.1)

The expression for the 2D case reads:

F (ω̃) = 1 − p +
1

3
pz2 tanh(z)

z − tanh(z)
, (36.2)

where

P =
3

2
M, p =

4

5
m. (36.3)

The expression for the 3D case reads:

F (ω̃) = 1 − 2p +
1

4
pz2 A(z)

z − A(z)
, (36.4)

where

A(z) = 2i
J1(−iz)

J0(iz)
, (36.5)

P = M, p = m. (36.6)

Please notice that these models satisfy both the theoretical low- high-
frequency limits, just as Pride model. Our models can be naturally ex-
tended to cover the dynamic thermal dissipation case.

In figures 36.1 we plotted the function Re[(iω)−1F (ω)] = Re[α(ω) − 1]
for the slit (top) and tube (bottom) flow, for the Johnson model, the Pride
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Figure 36.1: Plot of (iω̃)−1F (ω) for Johnson model (31.2), Pride model
(31.5), and the models proposed in the present work (36.4). Top: slit flow.
Bottom: tube flow.
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model, and the models proposed in the present work. We notice that our
models depart significantly from the Pride model only in the range of fre-
quencies ω̃ = 1 − 50.

It is quite difficult to tackle the study of the poles of (36.2), and (36.4)
from an analytic point of view. It is however possible to find the poles
numerically. A Mathematica program was written to find numerically the
poles of (36.2), and (36.4). Our findings indicate that the poles are always
located on the imaginary positive axis for all the possible combinations
of m and M , therefore ensuring, the causality of (36.2), and (36.4). In
figures 36.2 we plotted the functions (F (ω) + iω̃) for the 2D case (top),
and for the 3D case (bottom) against the imaginary frequency iω̃, for the
couple of parameters m = 0.1, and M = 1, which make Pride function
non-causal. We notice that all the zeros of this two functions (the poles of
k(ω)) belong to the positive part of the imaginary axis proving, therefore,
our claim.
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Figure 36.2: Plot of F (ω) + iω vs the imaginary frequency iω̃. m = 0.1;
M = 1.0. Top: 2D model function described in (36.2). Bottom: 3D model
function described in (36.4). The zeros of this function lie exclusively on
the positive part of the imaginary axis.
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Viscous dynamic permeability: theory and

experiments

In this Chapter we present the results of some laboratory experiments on
the dynamic viscous permeability performed in order to validate the nu-
merical computations and the scaling functions already broadly discussed
in Chapters IV and V. In

�
37 we give an overview of the previous ex-

perimental works on the frequency-dependent flow experiments in porous
media. The porous media under investigation is a stack of orifice plates as
described in

�
38. The choice of this particular model porous medium, was

suggested by the possibility of a direct accurate comparisons between the
experiments and the numerical results of the FEM computations on the
same micro-geometry. Experiments on the static viscous permeability, and
the dynamic viscous tortuosity, and the comparison with their predicted
numerical values, makes the object of

�
39, and

�
40 respectively. The ex-

periments on the dynamic viscous permeability and their comparison with
both the FEM computations, and the scaling model are described in

�
41,

where we also present the experimental measurements on the viscosity of
the saturating fluid.

�
37 In-series tube geometry

Experiments on the dynamic viscous permeability of porous media were
already the object of previous studies. Auriault et al. (1985) were the first

113
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Figure 37.1: In-series tubes model.

to report experimental results on dynamic viscous permeability in porous
media for an in-series slit geometry. Their measurements were performed in
the non-dimensional frequency range ω̃ = 10−2−102. Charlaix et al. (1988)
reported experimental measurements of k(ω) for a variety of fused crushed
glass beads in the same non-dimensional frequency range of Auriault et al.
(1985). Smeulders et al. (1992) presented a series of measurements on
porous media samples consisting of glass and sand glued beads. Kelder
(1998) performed experiments on glued glass beads, and permeable ceramic
materials like the ones used in Johnson et al. (1994). All these experimental
works confirmed the universal behavior for k(ω) predicted by Johnson’s
theory (see Chapter IV).

In this Chapter we compare numerical predictions and laboratory ex-
periments for a simple in-series tube geometry. The in-series tube model,
is a model porous medium idealized as a long capillary tube formed of N
straight elements of length Li, i = 1, .., N (L =

∑
Li), with circular cross

sections of radius Ri (see figure 37.1). This type of geometry has been
often modeled in terms of simple lubrication theory, which is also known as
Reynolds flow, or cubic law approximation (Achdou & Avellaneda, 1992;
Pride et al., 1993; Kelder, 1998). Assuming lubrication theory, it is possible
to derive the following expressions for the macroscopic parameters of the
dynamic viscous dissipation (Achdou & Avellaneda, 1992; Kelder, 1998).
First we define the length-weighted average valid for piece-wise varying
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cross sections:
N∑

i=1

Li

L
Rn

i = ‖Rn‖, (37.1)

where n is an integer. With the notation in (37.1), it is possible to express
the permeability k0 as

k0

φ
=

1

8

1

‖R2‖ ‖R−4‖ , (37.2)

the permeability α∞ as

α∞ = ‖R2‖ ‖R−2‖, (37.3)

and the characteristic viscous length Λ as

Λ =
‖R−2‖
‖R−3‖ . (37.4)

Thus, the shape factor M reads

M =
8k0α∞
φΛ2

=
‖R−3‖2

‖R−4‖ ‖R−2‖ . (37.5)

From (37.5) we notice that M < 1, because of the Cauchy-Schwartz inequal-
ity ‖R−3‖2 = (‖R−1‖ ‖R−2‖)2 < ‖R−2‖ ‖R−4‖. The expression for the dy-
namic permeability k(ω) in the Reynolds flow approximation is clearly an
harmonic average of the individual permeabilities ki(ω)

k(ω) = ‖ki(Ri, ω)−1‖−1, (37.6)

where

ki(Ri, ω) =
8ν

iR2
i ω

(
1 − 2J1(i

3/2Ri

√
ω/ν)

i3/2Ri

√
ω/νJ0(i3/2Ri

√
ω/ν)

)
, (37.7)

is the expression valid for the tubes model.
Lubrication theory can be a very good approximation for the full Stokes

problem for channel-like porous media with slowly varying cross-section
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Figure 37.2: Plot of the streamlines and iso-pressure lines for a 2D in-series
slit model: a quarter of the computational cell is showed.

(Pride et al., 1993), but it happens to be a very poor approximation when
the geometric constraint on the cross-sections is not satisfied (Cortis, 1997;
Oron & Berkowitz, 1998). This is illustrated in figure 37.2 where we plotted
the streamlines for the Stokes flow for a 2D in-series slit configuration: a
quarter of the computational cell is showed. It can be seen that for a large
part parte of the wide tube (gray zone), the flow is very much undisturbed,
but in the proximity of the narrow tube we cannot assume an undisturbed
approximation of the pressure profile Thus, the vertical components of the
velocity, which are neglected in the Reynolds flow approximation, play a
prominent role for this type of in-series tube models.

Our micro-geometry consists of a stack of orifice plates separated by
rings (see figure 37.3). The sample was saturated with a solution of glycerol
and water. The choice of this specific configuration was motivated by its
characteristic sharp-edge obstruction to the fluid flow, and because of its
simple axial-symmetric geometry. It is possible to find in literature many
experimental works on the oscillating flow through a singular circular orifice
inside a circular tube. Among the many of them we can cite Thurston &
Wood (1953), Thurston & Martin (1953), Thurston (1952), and Elger &
Adams (1989). However, our experiment is different from the ones of the
aforementioned papers because the number of orifices considered is much
larger. Each of the individual cells between two consecutive plates can
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Figure 37.3: Schematics of the rings and plates used in the experiments
with relevant dimensions.

be therefore considered a typical REV of the all porous medium. This
justifies the averaging procedures defined in

�
2 on both the pressure and

velocity fields. Furthermore the characteristic dimension of the pore throat
(the orifice) is much smaller than the macroscopic length over which the
pressure drop is measured, satisfying the constraint on the separation of
the length scales.

We report laboratory experiments for the static parameters k0, α∞, for
the viscosity η of the saturating fluid, and finally for the viscous dynamic
permeability k(ω). We are in a position to compare our measurements
against the calculated values, with no adjustable parameters. We will show
that the presence of the sharp-edge does not induce a large value of the
shape factor M in the dynamic viscous permeability. On the contrary, we
find that the value of M remains close to one.
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�
38 The porous medium under study

The porous medium under study consists of a stack of ten orifice plates
separated by nine ring elements. Geometry and relevant dimensions are
indicated in figure 37.3. Two sets of orifice plates have been used: one set
of metallic plates for the dynamic viscous measurements, and another of
plastic ones for the static permeability, and tortuosity measurements. The
spacing rings were in both cases made out of plastic material. The diameter
of the orifices were 2.95 ± 0.03 mm.

The numerical values of the viscous dynamic permeability were obtained
by solving the Stokes problem (10.12) and averaging the velocity solution
on the pore-fluid domain using (10.13), as described in Chapters II, IV,
and V. The problem was solved in axi-symmetric coordinates, and the grid
refinement technique described in Chapter IV was used to obtain detailed
description of the flow around the tip of the orifice.

The Stokes flow finite element computations of the static parameters k0,
α∞, α0, and Λ are summarized in table 39.1, where we also reported the
values obtained by means of the Reynolds flow approximation. We notice
that the macroscopic parameters obtained by means of the Reynolds flow
approximation are considerably different from the ones obtained from the
Stokes flow computations. We also notice that the characteristic viscous
length, computed according to Johnson’s formula (24.13), is equal to Λ =
1.292 mm, a value close to that of the radius of the orifice (r = 1.475 mm).
This is consistent with the definition of Λ as a viscous characteristic length
of the pore scale. The value of the tortuosity was α∞ = 163.67. To our
knowledge no such high value of the tortuosity was previously reported in
literature. However, from the computations, the ratio of α0/α∞ was equal
to 1.45, close to 4/3, the theoretical value for a straight tube. Despite
the sharp-edge geometry and the extremely high value of the tortuosity
the computed set of parameters yielded a value of the shape factor M =
(8k0α∞)/(φΛ2) = 1.46.

We performed FEM computations of the dynamic permeability, k(ω), in
the frequency range ω̃ = 10−2 − 102, solving the full Stokes problem (10.8),
as described in Chapters II, V, and IV. In figure 38.1, we plotted the
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Figure 38.1: Plots of the dynamic permeability, k(ω) for the Stokes flow
equations (10.8) (drawn line), and Reynolds flow approximation (37.6)
(dashed line). Top: absolute value. Bottom: phase shift. The charac-
teristic frequency was computed by means of the Stokes flow macroscopic
parameters.
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k0×10−9[m2] α∞ α0 Λ×10−3 [m] M

experiments 1.577 ± 0.02 156.68

Stokes 1.554 163.67 237.89 1.292 1.46

Reynolds 4.218 56.28 1.518 0.99

Table 39.1: Macroscopic parameters for the geometry under study: Labo-
ratory experiments, Stokes flow computations, and Reynolds flow computa-
tions. The porosity of the sample was φ = 0.8337.

results of these numerical computations and we compared them with the
simple lubrication theory, described in (37.6) and (37.7). We notice that
lubrication theory represents a poor approximation of the flow patterns
which are actually taking place inside our porous medium.

�
39 Static permeability measurements

The experiments on the static permeability, k0, were performed in a conven-
tional permeability set up. A fluid head smaller than 2 cm was imposed to
induce the fluid flow through the sample. The pressure drop was measured
by means of a differential manometer, and the mass flow was measured
with a mass balance: both devices were interfaced with a computer which
recorded pressure, and mass flow against time. The saturating fluid was a
solution of glycerol and water (68.8% in weight). This solution had a value
of viscosity high enough to ensure that the experiments were performed in
a flow regime characterized by values of the Reynolds number, Re < 10,
with respect to a characteristic length scale of the pore (in this case the di-
ameter of the orifice). Three experiments were performed at different fluid
temperatures. Results are summarized in figure 39.1, where we plotted the
recorded mass flow against the driving head. The experimental value for k0

reported in table 39.1 is the average value of the three different experiments
(see table 39.2). The relative error of the experiment to the computations
is thus equal to 1.5%.
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Figure 39.1: Experimental results for the static permeability. The volume
flow Q against the driving head ∆p is plotted. The three curves correspond
to three different fluid temperatures (see table 39.2).

T [ ] k0×10−9 [m2]

exp01 26.70 1.597

exp02 24.45 1.555

exp03 23.55 1.581

Table 39.2: Temperatures and permeabilities for the three laboratory exper-
iments.
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�
40 Experiments on the tortuosity

The experimental value of the tortuosity was determined by means of an
electrical resistivity measurement technique. Tortuosity and resistivity are
related by the formula α∞ = φrs/rf (Brown, 1980), where rs is the intrinsic
resistivity [Ωm] of the fluid-filled porous insulator, and rf is the intrinsic
fluid resistivity. The ratio α∞/φ is also known as formation factor. The
rings and plates (10 cells) porous sample was placed inside the measurement
cell. For this experiment, the ring and plates were made of plastic material
to ensure electric insulation. The sample was fully saturated with a 10%
wt NaCl-water solution. Resistances were measured with a Wayner-Kerr
resistance bridge. The applied electric voltage had a frequency of 10 kHz.
The measured values were: Rf = 109 Ω , and Rf = 20485 Ω, giving a value
of α∞ = 156.68. From the computations we had a value of α∞ = 163.67.
The relative error of the experiment to the computations is thus equal to
4.3%.

�
41 Dynamic measurements

In order to measure the frequency-dependent permeability we used the
experimental set-up developed by Kelder (1998), which is an improved ver-
sion of the one used by Smeulders et al. (1992). The setup is shown in
figure 41.2. An oscillating pressure gradient was induced by a vibration
exciter driving a rubber membrane. The vibration exciter was controlled
by a waveform generator driving a power amplifier, inducing an oscillating
flow with a frequency from 20 to 200 Hz. Hence the wavelength is much
larger than the length of the porous sample and the fluid may be regarded
as incompressible. The pressure drop across the porous sample was mea-
sured using two piezo-electric transducers. The first pressure transducer
was installed in the stiff steel body of the set-up in order to reduce reso-
nance disturbances, while the second one was mounted on the lower end
of a cylindrical Perspex shaft, fixed to a separate steel framework. The
pressure signals were recorded as electric charge, and converted by Kistler
5011 amplifiers, to obtain a proportional analogue voltage. Effective noise
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Figure 41.1: Viscosity experiments for the solutions of glycerol and wa-
ter. Solid lines and crosses represent the viscosity η as a function of the
temperature. Full circles represent available data in literature (Janssen &
Warmoeskerken, 1987, p. 146). Each of the four pictures corresponds to a
different weight proportion of glycerol and water in the mixture as indicated
on the top of each graph.

reduction in the recorded signals was obtained by signal averaging during
the measurements. The signals were then transformed to the frequency
domain by means of a Fast Fourier Transform algorithm.

In order to cover a wide range of frequencies a suitable choice of the
fluid viscosity and density was needed. We used for our experiments four
different glycerol-water solutions, namely 51.6 wt-%, 68.8 wt-%, 86.0 wt-
%, and 91.8 wt-% glycerol. We measured the viscosities of those solutions
in a Low-Shear viscosimeter as a function of the fluid temperature (see
figure 41.1). The points were fitted by third order polynomials whose coef-
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wt-% gly viscosity [mPa s] density ρ [kg m-3]

91.8 η = 0.0322T 3 − 2.0323T 2 + 28.055T + 256.32 1231.19

86.0 η = −0.0403T 3 + 3.1852T 2 − 88.782T + 950.90 1215.75

68.8 η = −0.0015T 3 + 0.1344T 2 − 4.6262T + 70.836 1165.46

51.6 η = 0.0005T 3 − 0.0367T 2 + 0.6052T + 5.1380 1119.16

Table 41.1: Polynomial expressions of the measured viscosities as a func-
tion of the fluid temperature T in � . Each row corresponds to a different
composition of the glycerol-water solution, whose relative weight proportion
is indicated in the first column.

ficients are presented in table 41.1. Results show a within range agreement
with the available literature data (Janssen & Warmoeskerken, 1987). In
figure 41.2b we give a schematics of the porous sample used with the rele-
vant dimensions. The porous sample has a length Lp, and a cross section
area equal to Atot. The sample is fully saturated, and the free surface of
the fluid is located at a height, Ls + x2, over the top surface of the porous
sample. The perspex shaft holding the top transducer, p2, has an area equal
to Ad, and is located at a distance x2 from the top surface of the sample.
The bottom transducer, p1, is at a distance x1 from the bottom surface of
the porous sample.

We notice that the velocity v̂2 can be obtained by the momentum equa-
tion over the distance Ls:

p̂2

Ls
= −ρiωv̂2. (41.1)

The macroscopic fluid velocity ŵ within the porous sample, follows from
the continuity equation

φŵ =
Atot − Ad

Atot
v̂2. (41.2)

Using the momentum equations over the distance x1, and x2, it is possible
to express pressure amplitudes at the top and the bottom of the sample as
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Figure 41.2: (a) Dynamic Darcy Cell for dynamic permeability measure-
ments. (b) Detailed sketch with relevant dimensions of porous material and
its surroundings. (After Kelder (1998) with permission.)

functions of the recorded pressure amplitudes p̂1 and p̂2:

p̂h = p̂1 −
Atot − Ad

Atot

x1

Ls
p̂2, (41.3)

p̂l = p̂2 +
Atot − Ad

Atot

x2

Ls
p̂2. (41.4)

It is now possible to deduce the value of the dynamic permeability k(ω)
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from the equation:
ηφ

k(ω)
ŵ =

p̂h − p̂l

Lp
. (41.5)

A measure of the fluid temperature was made at each frequency shot
during dynamic measurements. The corresponding viscosity was deduced
from the polynomial expressions in table 41.1.

Particular care was paid to avoid the presence of air bubbles in the
saturating fluid.

Charlaix et al. (1988) reported that even bubbles of the size of a fraction
of a millimeter can significantly affect the experimental results. The rela-
tively high viscosities of the fluids used in our dynamic experiments made
this issue particularly important. Another point that made extremely diffi-
cult the dynamic permeability measurements was the very low value of the
applied pressure, due to the relatively high value of the static permeability
k0. In fact, in order to ensure linearity of the flow, we had to keep the
Reynolds number Re < 10. For Re ≈ 10, extra-harmonic components in
the Fourier spectrum were observed, and for larger Reynolds numbers, a
chaotic behavior appeared. Therefore low energy inputs had to be used
when dealing with our lowest values of the viscosity, leading to a lower
value of the signal-to-noise ratio.

Six experiments with different saturating fluids were performed: the set
of the weight compositions is reported in table 41.1.

In figures 41.3, we plotted the measured dynamic permeability, k(ω) for
the different experiments, together with the Stokes flow numerical compu-
tations and the Pride model function. As it can be seen from figure 41.3,
we have found a satisfactory agreement between the measurements and the
computations.

�
42 Conclusions

In this Chapter, we presented the results of laboratory experiments on the
dynamic permeability of a porous medium consisting in stack of orifice-
plates, saturated with a glycerol-water solution. Experiments were made
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Figure 41.3: Comparison of laboratory experiments and computations on
viscous dynamic permeability for the arrangment of orifice-plates. Top:
absolute value. Bottom: phase shift (same legend as top). Composition
of the saturating glycerol-water fluid in weight: (¤) 86.0 %; (4) 86.0 %;
(•) 68.8 %; (×) 51.6 %; (◦) 91.1 %; (+) 91.1 %.
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to determine dependence of the viscosity of the saturating fluids with the
temperature, for different proportions of the glycerol and water. The static
permeability of the porous medium was measured in a conventional Darcy
cell: the experiments are in perfect agreement with the FEM computations.
The tortuosity was also measured saturating the sample with a NaCl-water
solution and measuring the electric resistance with a Wayner-Kerr bridge.
Finally, we performed experiments on the frequency-dependent permeabil-
ity and compared the results with the frequency-dependent Stokes flow
computations. The experiments are in satisfactory agreement with the
computations. Finally, we notice that the simple lubrication theory fails to
predict the experimental results.
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